Rowbottom cardinals were discovered by Frederick Rowbottom in 1971 as a strong [large cardinal axiom](Upper_attic.md) which implies the existence and consistency of $0^{\sharp}$ ([[Constructible universe#Sharps|zero-sharp]]). In terms of consistency strength, [ZFC](ZFC.md "ZFC") + Rowbottom is equiconsistent to ZFC + [Jónsson](Jonsson.md "Jonsson"), ZFC + Rowbottom is equiconsistent to ZFC + [Ramsey](Ramsey.md "Ramsey"), and ZFC + Rowbottom is stronger than ZFC + $0^{\#}$. Every Rowbottom cardinal is Jónsson, and every Ramsey cardinal is Rowbottom. {% cite Kanamori2009 %} ## Definition Rowbottom cardinals are defined with a [](Partition%20property.md): - $\kappa$ is *$\nu$-Rowbottom* iff $\kappa\rightarrow \[\kappa\]^{<\omega}_{\lambda,<\nu}$ for every $\lambda<\kappa$. This means that for any partition (function) $f:\[\kappa\]^{<\omega}\rightarrow\lambda$, there is some set of ordinals $H\subseteq\kappa$ such that $(H,<)$ has order type $\kappa$ and $\|f"\[H\]^{<\omega}\|<\nu$. - $\kappa$ is *Rowbottom* iff it is $\omega_1$-Rowbottom. Equivalently, $\kappa$ is Rowbottom if and only if $\kappa>\aleph_1$ and $\kappa$ satisfies a strong generalization of [](Chang's_conjecture.md), namely, any model of type $(\kappa,\lambda)$ for some uncountable $\lambda<\kappa$ has a proper elementary substructure of type $(\kappa,\aleph_0)$. {% cite Jech2003 %} Rowbottom cardinals are not necessarily "large". In fact, the <a href="Axiom_of_Determinacy" class="mw-redirect" title="Axiom of Determinacy">Axiom of Determinacy</a> implies $\aleph_\omega$ is Rowbottom, and it is widely considered consistent for $\aleph_\omega$ to be Rowbottom even under the <a href="Axiom_of_Choice" class="mw-redirect" title="Axiom of Choice">Axiom of Choice</a>. If it is consistent for $\aleph_\omega$ to be Rowbottom, it is consistent for $\aleph_{\omega^2}$ to be the least Rowbottom cardinal. {% cite Kanamori2009 %} ## Facts - If a Rowbottom exists, then <a href="Zero_sharp" class="mw-redirect" title="Zero sharp">$0^{\#}lt;/a> exists and is consistent. {% cite Kanamori2009 %} - Every Rowbottom cardinal is Jónsson. {% cite Kanamori2009 %} - Every Rowbottom cardinal $\kappa$ either has cofinality $\omega$ or is weakly inaccessible. {% cite Kanamori2009 %} - Every $\nu$-Rowbottom cardinal either has cofinality less than $\nu$ or is [](Inaccessible.md) (and thus if a $\nu$-Rowbottom cardinal $\kappa$ has cofinality $\nu$, then $\nu=\kappa$ and $\kappa$ is $\kappa$-Rowbottom.) {% cite Kanamori2009 %} - Any singular limit $\kappa$ of [measurable](Measurable.md "Measurable") cardinals is $\mathrm{cf}(\kappa)^+$-Rowbottom. {% cite Kanamori2009 %} - If $\kappa=2^{<\nu}$ is a regular $\nu$-Rowbottom cardinal, then for any $\nu\leq\lambda<\kappa$, $2^\lambda=\kappa$. Thus, if the first condition holds for $\kappa$ and $\nu$ but $\nu < \kappa$, then <a href="GCH" class="mw-redirect" title="GCH">GCH</a> fails at every cardinal $\lambda\in\[\nu,\kappa)$. {% cite Kanamori2009 %} - If $\kappa$ is $\nu$-Rowbottom and there is a limit cardinal $\lambda$ such that $\nu\leq\lambda<\kappa$, then $\kappa$ is a limit of limit cardinals (i.e. $\aleph_{\alpha^\beta}$ for some ordinals $\alpha$ and $\beta$). {% cite Kanamori2009 %}