lt;/a> and the <a href="Strong_limit" class="mw-redirect" title="">strong limit</a> cardinals - <a href="Theta" class="mw-redirect" title="Theta">$\Thetalt;/a> - the [continuum](Continuum.md "Continuum") - [](Cardinal_characteristics.md) of the continuum - the <a href="Bounding_number" class="mw-redirect" title="Bounding number">bounding number $\frak{b}lt;/a>, the <a href="Dominating_number" class="mw-redirect" title="Dominating number">dominating number $\frak{d}lt;/a>, the <a href="Covering_number" class="mw-redirect" title="Covering number">covering numbers</a>, <a href="Additivity_number" class="mw-redirect" title="Additivity number">additivity numbers</a> and many more - the <a href="Descriptive_set_theory" class="mw-redirect" title="Descriptive set theory">descriptive set-theoretic</a> cardinals - [](Aleph.md#aleph_fixed_point) - the [aleph](Aleph.md "Aleph") numbers and the [](Aleph.md) - [](Buchholz's_ψ_functions.md) - [$\aleph_\omega$](Aleph.md#aleph_omega "Aleph") and <a href="Singular" class="mw-redirect" title="Singular">singular</a> cardinals - [$\aleph_2$](Aleph.md#aleph_two "Aleph"), the second uncountable cardinal - <a href="Uncountable" class="mw-redirect" title="Uncountable">uncountable</a>, <a href="Regular" class="mw-redirect" title="Regular">regular</a> and <a href="Successor" class="mw-redirect" title="Successor">successor</a> cardinals - [$\aleph_1$](Aleph.md#aleph_one "Aleph"), the first <a href="Uncountable" class="mw-redirect" title="Uncountable">uncountable</a> cardinal - [cardinals](Cardinal.md "Cardinal"), <a href="Infinite" class="mw-redirect" title="Infinite">infinite</a> cardinals - <a href="Aleph_zero" class="mw-redirect" title="Aleph zero">$\aleph_0lt;/a> and the rest of the [](Lower_attic.md)