The Hardy hierarchy, named after G. H. Hardy, is a family of functions
\((H_\alpha:\mathbb N\rightarrow\mathbb N)_{\alpha<\mu}\)
where \(\mu\) is a large countable ordinal such that a fundamental
sequence is assigned for each limit ordinal less than \(\mu\). The
Hardy hierarchy is defined as follows:
- \(H_0(n)=n\)
- \(H_{\alpha+1}(n)=H_\alpha(n+1)\)
- \(H_\alpha(n)=H_{\alpha\[n\]}(n)\) if and only if
\(\alpha\) is a limit ordinal,
where \(\alpha\[n\]\) denotes the \(n\)th element of the
fundamental sequence assigned to the limit ordinal \(\alpha\)
Every nonzero ordinal
\(\alpha<\varepsilon_0=\min\{\beta\|\beta=\omega^\beta\}\)
can be represented in a unique Cantor normal form
\(\alpha=\omega^{\beta_{1}}+
\omega^{\beta_{2}}+\cdots+\omega^{\beta_{k-1}}+\omega^{\beta_{k}}\)
where
\(\alpha>\beta_1\geq\beta_2\geq\cdots\geq\beta_{k-1}\geq\beta_k\).
If \(\beta_k>0\) then \(\alpha\) is a limit and we can assign
to it a fundamental sequence as follows
\(\alpha\[n\]=\omega^{\beta_{1}}+
\omega^{\beta_{2}}+\cdots+\omega^{\beta_{k-1}}+\left\{\begin{array}{lcr}
\omega^\gamma n \text{ if } \beta_k=\gamma+1\\
\omega^{\beta_k\[n\]} \text{ if } \beta_k \text{ is a limit.}\\
\end{array}\right.\)
If \(\alpha=\varepsilon_0\) then \(\alpha\[0\]=0\) and
\(\alpha\[n+1\]=\omega^{\alpha\[n\]}\).
Using this system of fundamental sequences we can define the Hardy
hierarchy up to \(\varepsilon_0\).
For \(\alpha<\varepsilon_0\) the Hardy Hierarchy relates to the
[](Fast-growing_hierarchy.md)
as follows
\(H_{\omega^\alpha}(n)=f_\alpha(n)\)
and at \(\varepsilon_0\) the Hardy hierarchy "catches up" to the
fast-growing hierarchy i.e.
\(f_{\varepsilon_0}(n-1) ≤ H_{\varepsilon_0}(n) ≤
f_{\varepsilon_0}(n+1)\) for all \(n ≥ 1\).
There are much stronger systems of fundamental sequences you can see on
the following pages:
- <a href="http://googology.wikia.com/wiki/List_of_systems_of_fundamental_sequences" class="external text">List of systems of fundamental sequences</a>
- [](Madore's_ψ_function.md)
- [](Buchholz's_ψ_functions.md)
- [](Jäger's_collapsing_functions_and_ρ-inaccessible_ordinals.md)
- [Collapsing functions based on a weakly Mahlo
cardinal](User_blog:Denis_Maksudov/Ordinal_functions_collapsing_the_least_weakly_Mahlo_cardinal;_a_system_of_fundamental_sequences "User blog:Denis Maksudov/Ordinal functions collapsing the least weakly Mahlo cardinal; a system of fundamental sequences")
The Hardy hierarchy has the following property
\(H_{\alpha+\beta}(n)=H_\alpha(H_\beta(n))\).
## See also
[](Fast-growing_hierarchy.md)
[](Slow-growing_hierarchy.md)
## References
Hardy,G.H. A theorem concerning the infinite cardinal numbers. Quarterly
Journal of Mathematics (1904) vol.35 pp.87–94