Extended arrow notation is a notation that was invented by Googology
Wikia User Googleaarex:
<a href="https://googology.wikia.com/wiki/User:Googleaarex/" class="external autonumber">[1]</a>.
# Basic Notation
Basic Notation is very simple. It generalizes the [](Knuth's_up-arrow_notation.md).
\(a \uparrow_2 b = a
\underbrace{\uparrow\uparrow\dots\uparrow}_b a\)
\(a \uparrow_3 b = a
\underbrace{\uparrow_2\uparrow_2\dots\uparrow_2}_b a\)
\(a \uparrow_n b = a
\underbrace{\uparrow_{n-1}\uparrow_{n-1}\dots\uparrow_{n-1}}_b
a\)
Note that all parts of Extended arrow notation, like Knuth's up-arrow
notation, have expressions that are evaluated from the right.
Limit in FGH: \(f_\omega(n)\)
# Nested up-arrow notation
To extend the notation here, we first have to make a change:
\(\uparrow_n =
\uparrow_{\underbrace{\uparrow\uparrow\dots\uparrow}_{n-1}}\)
Then we turn the problem into Basic notation: \(a
\uparrow_{\uparrow_2} b = a
\uparrow_{\underbrace{\uparrow\uparrow\dots\uparrow}_b} a = a
\uparrow_{b+1} b\), and \(a \uparrow_{\uparrow\uparrow_2} b = a
\underbrace{\uparrow_{\uparrow_2}\uparrow_{\uparrow_2}\dots\uparrow_{\uparrow_2}}_b
a\)
Then: \(a \uparrow_{\uparrow_{\uparrow_2}} b = a
\uparrow_{\uparrow_{b+1}} a\) and so on.
Limit: \(\varepsilon_0\)
# Array up-arrow notation
## \(\Omega\) typed arrows
Limit: \(\psi(\varepsilon_{\Omega+1})\)
## \(\Omega_2\) typed arrows
Limit: \(\psi(\psi_1(\varepsilon_{\Omega_2+1}))\)
## \(\Omega_3\) typed arrows and beyond
Limit: \(\psi(\psi_I(0))\)
## Inaccesible arrows
Limit: \(\psi(\psi_{I(1,0)}(0))\)
## 1-inaccesible arrows and beyond
Limit: \(\psi(\psi_{I(\omega, 0)}(0))\)
# Dimensional array up-arrow notation
Limit: \(\psi(\psi_{\chi(\varepsilon_{M+1})}(0))\)
# Hyperarray up-arrow notation
Limit: \(\psi(\psi_{\chi(M(1,0))}(0))\)
# Legion array up-arrow notation
## Layered arrays
Limit: \(\psi(\psi_{ {\Xi(1)}^\omega}(0))\)
## The hyperseparator
Limit: \(\psi(\psi_{M(1,\Xi(1)+1)}(0))\)
## The second hyperseparator
Limit:???
# Hyperlegion array up-arrow notation