lt;\kappa$-closed and $P=\bigcup_{\alpha<\kappa}P_{\alpha}$. 2. For each $\mathcal{L}$-structure $\mathfrak{B}$ with universe an ordinal $\alpha<\kappa$ we have a set $F_{\mathfrak{B}}\subseteq P$ such that $\{p \in P \mid \mathrm{rlm}(p) = \alpha\} \subseteq \mathrm{dns}(F_{\mathfrak{B}})$. Then there is a set $G$ which is $\mathbb{P}$-generic over $\mathcal{D}$, and for any $\mathcal{L}$-structure $\mathfrak{A}$ with universe $\kappa$, $\exists \mathfrak{B}\prec_O \mathfrak{A}$ s.t. $G\cap F_{\mathfrak{B}}\ne \varnothing$. Furthermore, $G$ can be chosen to be $\kappa$-complete. >[!info]+ Remark > The set $D_{\alpha}$ correspond to conditions giving the construction up to $\alpha$. > $\begin{align*} \{p \in P \mid \mathrm{rlm}(p) = \alpha\} &=\\ \{ p \in P \mid p\in D_{\beta} \iff \beta<\alpha \} &=\\ \bigcap_{\beta<\alpha} D_{\beta} \setminus \bigcup_{\alpha\leq\beta}D_{\beta} &\subseteq \mathrm{dns}(F_{\mathfrak{B}}) \end{align*}$ > The way we use it is that if $p$ corresponds to a construction up to $\alpha$, then it can be extended with a condition from $F_{\mathfrak{B}}$ for any $\mathfrak{B}$ with universe $\alpha$. >[!info]+ Remark >Note that for lt;\kappa$-closed posets, meeting $\kappa$ many dense sets with a $\kappa$-complete filter is ensured by AC (even $\mathrm{DC}_{\kappa}$). See [[Viale - Useful axioms#Forcing axioms]] **Lemma 4.2.2** If $2^{<\kappa}=\kappa$ then there is a suborder $\mathbb{Q}$ of $\mathbb{P}$ with $\lvert Q \rvert=\kappa$ having the same properties . **Theorem 4.2.3** If $2^{<\kappa}=\kappa$ and $\mathbb{P},\mathcal{D},F_{\mathfrak{B}}$ are as in the theorem, then there is a generic extension $V[H]$ ($H$ is generic for $\mathbb{Q}$) preserving cofinalities, cardinalities and exponentiation, where there is a $\mathbb{P}$-generic $G$ as in thm 4.1.6. **Theorem 4.2.4.** Assume $2^{<\kappa}=\kappa$ and let $\mathbb{P} = (P, \leq )$ is a lt;\kappa$-closed poset of size $\kappa$ and $\mathbb{Q}$ the poset of partial functions from $\kappa$ to $\kappa$ of size lt;\kappa$, which adds a $\diamondsuit_{\kappa}$-sequence. Then for $G\subseteq P$ generic, eithery $V[G]=V$ or $V[G]=V[H]$ for some $H\subseteq Q$ generic. ^d817b6 ### Constructing Souslin tree **Theorem 4.2.4** $\diamondsuit_{\omega_{1}}$ implies that there is an $\omega_{1}$-Souslin tree **Pf sketch.** $P=\{ \left< \tau,\leq \right> \mid \tau <\omega_{1} \text{ and } \left< \tau,\leq \right> \text{ is a normal tree} \}$ Ordered by end-extension. $D_{\alpha}=\{ p \in P \mid \alpha<\tau^{p} \}$ +1 Note $\mathrm{rlm}(p)=\tau^{p}$ and $P_{\alpha}=\{ p\in P \mid \tau^{p}\subseteq \alpha \}$ Fix a unary predicate symbol $\mathbf{X}$, and for every model $\mathfrak{B}$ with universe $\tau$, let $F_{\mathfrak{B}}=F^{0}_{\mathfrak{B}}\cup F^{1}_{\mathfrak{B}}$ where $F^{0}_{\mathfrak{B}}=\{ p\in p \mid \mathrm{rlm}(p)=\tau \text{ and } \mathbf{X}^{\mathfrak{B}} \text{ is not a maximal antichain in }\left< \tau^{p},\leq^{p} \right> \}$ $F^{1}_{\mathfrak{B}}=\{ p\in p \mid \exists \alpha \text{ s.t. every point at level } \alpha \text{ in the tree }\left< \tau^{p},\leq^{p} \right> \text{ is above some element of }\mathbf{X}^{\mathfrak{B}} \}$ - The sets $D_{\alpha}$ ensure the generic gives a tree of height $\omega_{1}$. - All levels are countable by the choice of the relation as end-extension. - $F^{1}_{\mathfrak{B}}$ ensures that antichains are countable - given a maximal antichain $X$, take a model $\mathfrak{A}$ where $\mathbf{X}^{\mathfrak{A}}=X$ and $\leq^{\mathfrak{A}}=\leq_{T}$ . The theorem tells us that there are $\mathfrak{B}\prec_{O}\mathfrak{A}$ and $p\in G\cap F_{\mathfrak{B}}$. We will get that in fact $p \in F^{1}_{\mathfrak{B}}$ and then get that $X=X \cap \tau^{p}$ . - $F^{0}_{\mathfrak{B}}$ is needed for the almost-denseness, i.e. for $\{p \in P \mid \mathrm{rlm}(p) = \alpha\} \subseteq \mathrm{dns}(F_{\mathfrak{B}})$.