quot; as long as all required elements are present. $\pi_{a}(x)$ says that this is in fact the case. >Formally: if $\mathfrak{B}=(B, E)$ is a model of the axiom of extensionality, $\mathfrak{B}_0$ the well-founded part of $\mathfrak{B}$, and $\mathfrak{A}$ the transitive collapse of $\mathfrak{B}_0$ via $i: \mathfrak{B}_0 \rightarrow \mathfrak{U}$, then: > $\mathfrak{B} \vDash \pi_a(x) \quad$ if and only if $\quad x \in B_0, a \in A$ and $i(x)=a$. >[!info] Definition >We say that *the syntax of $\mathscr{L}$ is represented on $A$* if $A$ is a transitive set closed under primitive recursive set functions, $\mathscr{L}(\tau) \subseteq A$ for all $\tau$ considered, and > $ > \operatorname{Mod}\left(\pi_a\right) \in \mathrm{EC}_{\mathscr{L}\left[\tau_{\mathrm{set}}\right]} \text { for } \quad a \in A > $ >[!info] Definition >We say that a logic $\mathscr{L}$ is *adequate to truth in* a logic $\mathscr{L}^{\prime}$ if for every $\tau$ there is $\tau^{+}=\left[\tau, \tau_{\text {set }}, \mathrm{Th}, \tau^{\prime}\right]$ and $\theta \in \mathscr{L}\left[\tau^{+}\right]$ such that for every $\mathfrak{M} \in \operatorname{Str}[\tau]$, the following conditions hold: > (AT1) $\left(\mathfrak{M}, \mathfrak{A}', \mathrm{Th}_{\mathscr{L}'}(\mathfrak{M}), \mathfrak{N}\right) \vDash_{\mathscr{L}} \theta$ for some $\mathfrak{N}$. > (AT2) If $(\mathfrak{M}, \mathfrak{B}, T, \mathfrak{N}) \vDash_{\mathscr{L}} \theta \wedge \pi_{\varphi}(b)$, then $b \in T$ if and only if $\mathfrak{M} \vDash_{\mathscr{L}^{\prime}} \varphi$, whenever $\varphi \in A^{\prime}$ and $b \in B$. > >Usually $\theta$ will be of the form $\eta \wedge \forall x(\operatorname{Th}(x) \leftrightarrow \exists s S(x, s))$ where $S\in \tau'$ (the satisfaction predicate) and $\eta$ an $\mathscr{L}$-sentence (in the language containing $S$) embodying the truth definition of $\vDash_{\mathscr{L}'}$ ^013f7e