# Overview
>[!info] Definition
>$\mathrm{K}$ is the class of *ordinal-definable sets*.
>$\mathrm{V}=\mathrm{K}$ abbreviates "Every set is ordinal-definable".
**Theorem.** $V=\mathrm{K}$ iff there is a definable well-ordering of $V$.
**Theorem**. If ZF is consistent, then so are
(i) $\mathrm{ZF}+\mathrm{GCH}+\mathrm{V}=\mathrm{K}+\mathrm{V} \neq \mathrm{L}$;
(ii) $\mathrm{ZF}+\mathrm{V}=\mathrm{K}+2^{\aleph_0} \neq \aleph_1$.