quot; as an abbreviation for the following statement: > - For any assignment $g$ from the free variables $\left(x_1, \ldots, x_n\right)$ of $\phi$ to $A$, if the range of $g$ is contained in the domain of $f$, then $\underline{A} \vDash \phi\left(g\left(x_1\right), \ldots, g\left(x_n\right)\right) \quad$ iff $\underline{B}=\phi\left(f\left(g\left(x_1\right)\right), \ldots, f\left(g\left(x_n\right)\right)\right)$. > > A similar abbreviation is defined for $f \subseteq A*B$ >[!info] Definition > Fix two L-structures $\underline{A}$ and $\underline{B}$. $\left(F_\beta: \beta \leq \alpha\right)$ is an *$(L(\mathtt{aa}),\alpha)$ back-and-forth system from $\underline{A}$ to $\underline{B}$* if the following conditions are satisfied. > (1) For all $f \in F_0$, $f \subseteq A * B$ and for every atomic formula $\phi, \underline{A}\vDash\phi(\operatorname{dom} f)$ iff $\underline{B}\vDash\phi(\operatorname{rn} f)$. > (2) $0 \in F_\alpha$. > (3) Whenever $\gamma<\beta \leq \alpha$ and $f \in F_\beta$ : > > (i) $(\forall a \in A)(\exists b \in B)\left[f \cup\{(a, b)\} \in F_\gamma\right]$, > (ii) $(\forall b \in B)(\exists a \in A)\left[f \cup \{(a, b)\} \in F_\gamma\right]$, > (iii) $\left(\mathtt{aa}s \in P_{\omega_1}(A)\right) \left(\mathtt{stat}t \in P_{\omega_1}(B)\right) \left[f \cup\{(s, t)\} \in F_\gamma\right]$ > (iv) $(\mathtt{aa} t \in P_{\omega_1} (B))(\mathtt{stat} s \in P_{\omega_1}(A)) \left[f \cup \{(s, t)\} \in F_\gamma\right]$ > > $\left(F_n: n<\omega\right)$ is an *$L(\mathtt{aa})$ back-and-forth system from $\underline{A}$ to $\underline{B}$* if for each $k<\omega,\left(F_n: n \leq k\right)$ is an $\left(L(\mathtt{aa}), k\right)$ back-and-forth system from $\underline{A}$ to $\underline{B}$. > ^a59ff8 >[!note] Remark > We could also impose two other conditions in the above definition. > (4) Whenever $\gamma<\beta \leq \alpha, F_\beta \subseteq F_\gamma$. > (5) For all $\beta \leq \alpha, f \in F_\beta$, and $s_1, s_2 \in P_{\omega_1}(A) \cap \mathrm { dom } f$ > $ > \begin{aligned} > & s_1 \subseteq s_2 \quad \text { iff } \\ > & f\left(s_1\right) \subseteq f\left(s_2\right) \quad \text { iff } \operatorname{not}\left(s_2 \subseteq s_1\right) \quad \text { iff } \\ > & \operatorname{not}\left(f\left(s_2\right) \subseteq f\left(s_1\right)\right) . > \end{aligned} > $ > > The proofs show that all of our theorems remain true if we add these conditions to Definition 2.2 (or to the **2.4 THEOREM.** Let $\underline{A}$ and $\underline{B}$ be two L-structures. If there is an ($L(\mathtt{aa})$, $\alpha$) back-and-forth system from A to $\underline{B}$, then $\underline{A} \equiv^\alpha \underline{B}\left(L_{\infty \omega}(\mathtt{aa})\right)$. The converse is true if $\alpha<\omega$ and $L$ is finite. ^3b15e5 # IV. A sentence of $L(\mathtt{aa})$ which is not expressible in $L_{\infty\infty}$ The language for the sentence contains lt;,R,\varepsilon$ as binary predicates and $U,V,P^{U},P^{V}$ as unary predicates. - Let $\psi$ be the conjunction of the following: 1. $(U,<),(V,<)$ are disjoint well orderings, and lt;\, \subseteq U\times U \cup V \times V$. 2. $\varepsilon$ is an extensional relation which is a subset of $\mathrm{U} \times \mathrm{P}^{U} \cup V \times \mathrm{P}^{U}$. So we can think of the elements of $\mathrm{P}^{U}$ and $\mathrm{P}^V$ as being subsets of $U$ and $V$. 3. $P^{U}=P_{\omega_{1}}(U)$ and $P^{V}=\mathcal{P}_{\omega_1}(V)$ 4. $\forall x \forall y\left[R(x, y) \leftrightarrow P^U(x) \wedge P^V(y) \wedge(x,<{\restriction} x)\cong(y,<{\restriction} y)\right]$ All these can be formulated as $\mathcal{L}_{\omega_{1}\omega_{1}}$ sentences. - Let $\phi$ be the $L(\mathtt{aa})$ sentence $\mathtt{aa}s \exists x \exists y\left[ P^U(x) \wedge P^V(y) \wedge x=s\cap U \wedge y=s\cap V \wedge R(x,y)\right]$ **Lemma.** For a model $\mathfrak{A}$ of the above language, $\mathfrak{A}\vDash \psi \land \phi$ iff $(U^{\mathfrak{A}},<^{\mathfrak{A}})\cong(V^{\mathfrak{A}},<^{\mathfrak{A}})$ **Theorem (Malitz).** No sentence of $L_{\infty\infty}$ can express isomorphism between two arbitrary well-orders. **Corollary.** There is no sentence in $L_{\infty\infty}$ which is equivalent to $\phi$.