# Abstract
These notes present the full core model theory for measures of order zero.
# 1. Fine structure
>[!note] Remark
>I mostly use the notations from [[Jensen - Manuscript on fine structure, inner model theory, and the core model below one Woodin cardinal]] starting at section 2.4.
>In particular we assume that the indexing of the $J$-hierarchy and the measure sequences is done at limit ordinals, to avoid using $\omega\alpha,\omega\nu\dots$ etc.
## 1.1 The $\Sigma_{1}$ Projectum
>[!info] Definition
>A *$J$-model* is structure of the form
> $
> M=\left\langle J_\alpha^{A_1, \ldots, A_n}, B_1, \ldots, B_m\right\rangle
> $
> (see [[Jensen's hierarchy]]) which is [[Amenable structure|amenable]] in the sense that $x \cap B_i \in J_\alpha^{\vec{A}}$ whenever $x \in J_\alpha^{\vec{A}}$ and $i=1, \ldots, m$. The $B_i$ are taken as unary predicates.
> $J_\alpha^{\vec{A}}$ is *acceptable* iff for all limit $\beta \leq \nu<\alpha$ we have:
> - If $a \subset \beta$ and $a \in J_{\nu+\omega}^{\vec{A}} \backslash J_\nu^{\vec{A}}$, then $\bar{\bar{\nu}} \leq \beta$ in $J_{\nu+\omega}^{\vec{A}}$.
>
> >[!quote]
>Accepability says essentially that if something dramatic happens to $\beta$ at some later stage $\nu$ of the construction, then $\nu$ is, in fact, collapsed to $\beta$ at that stage.
>[!info] Definition
> Let $M$ be acceptable. The *$\Sigma_1$-projectum of $M$* (in symbols $\left.\rho_M\right)$ is the least $\rho \leq \mathrm{On}_M$, such that there is a $\underline\Sigma_1(M)$ set $a \subset \rho$ with $a \notin M$.
**Lemma.** Let $M=\left< J_{\alpha}^{\bar{A}},\bar{B} \right>$ be a $J$-model, $\rho=\rho_{M}$
1. $\rho_{M}$ is a cardinal in $M$ (or $\mathrm{On}_{M}$)
3. If $u \in J_\rho^A$, there is no $\underline{\Sigma}_1(M)$ partial map of $u$ onto $J_\rho^A$.
4. $J_{\rho}^{\bar{A}}=H_{\rho}^{M}$
### Standard codes and parameters
>[!info] Definition
>- For any $p \in\left[\mathrm{On}_M\right]^{<\omega}$ we define the *standard code* $A^p$ determined by $p$ as:
> $
> A^p=A_M^p=:\left\{\langle i, x\rangle \mid M\models \varphi_i[x, p]\right\} \cap H_{\rho_M}^M
> $
> where $\left\langle\varphi_i \mid i<\omega\right\rangle$ is a fixed recursive enumeration of the $\Sigma_1$-fomulae.
> - The *reduct of $M$ by $p$* is defined to be
> $
> M^p=:\left\langle J_{\rho_M}^{\vec{A}}, A_M^p\right\rangle
> $
> - A *good parameter* is a $p \in M$ which witnesses the projectum - i.e. there is $B \subset M$ which is $\Sigma_1(M)$ in $p$ with $B \cap H_\rho^M \notin M$.
> $P=P_M=$ : The set of $p \in\left[\mathrm{On}_M\right]^{<\omega}$ which are good parameters.
> - A parameter $p$ is *very good* if every element of $M$ is $\Sigma_1$ definable from parameters in $\rho_M \cup\{p\}$, i.e. $M=h_M\left(\rho_M \cup\{p\}\right)$.
> $R=R_M=$ : the set of $r \in\left[\mathrm{On}_M\right]^{<\omega}$ which are very good parameters.
**Remark.** $M^p$ is an acceptable model which - if $p \in R_M$ - incorporates complete information about $M$.
**Lemma.**
1. $p\in P_{M} \iff A_M^{p}\notin M$
2. $R_{M}\subseteq P_{M}$
## 1.2 Iterated Projecta and Soundness
>[!info] Definition
> Let $N=\left< J_{\beta}^{\vec A},\vec B \right>$ be acceptable. We define by induction:
> - $\rho^{n}=\rho_{N}^{n}$ the *$n$-th projectum*;
> - For $p\in \prod_{i<n}H^{N}_{\rho^{i}}$
> - $A^{n,p}$ - the *$n$-th standard code*
> - $N^{n,p}$ - the *$n$-th reduct*
> in the following way:
> - $\rho^{0}=\beta$ ; $N^{0,\varnothing}=N$
> - $\rho^{n+1}=\min \left\{ \rho_{N^{n,p}} \mid p\in \prod_{i<n}H^{N}_{\rho^{i}} \right\}$
> - $A^{n+1,p}=A_{N^{n,p{\restriction}n}}^{p(n)\cup\{\rho^{n+1}\}}$
> - $N^{n+1,p}=(N^{n,p{\restriction}n})^{p(n)\cup\{\rho^{n+1}\}}$
>
> Denote: $H_{N}^{n}=H_{\rho^{n}}$; $\Gamma_{N}^{n}=\prod_{i<n} H_{N}^{i}$
>
> We further define the $n$-th *good* and *very good* parameters:
> - $P^{0}=R^{0}=\varnothing$
> - $P^{n+1}=\{ p\in \Gamma^{n+1} \mid p{\restriction}n\in P^{n}\land \rho^{n+1}=\rho_{N^{n,p{\restriction}n}}\land p(n)\in P_{N^{n,p{\restriction}n}}\}$
> - $R^{n+1}=\{ p\in \Gamma^{n+1} \mid p{\restriction}n\in R^{n}\land \rho^{n+1}=\rho_{N^{n,p{\restriction}n}}\land p(n)\in R_{N^{n,p{\restriction}n}}\}$
>
> Since the projecta are decreasing, they stabilize on the *eventual projectum* $\rho^{\omega}$.
> $P^{*},R^{*}$ are (isomorphic to) the eventual sets of parameters.
> The *standard parameter* of $N$ - $p_{N}$ - is the least element of $P^{*}_{N}$ in the order $a<^{*}b \iff \exists \nu (a\smallsetminus \nu+1=b\smallsetminus\nu+1 \land \nu\in b \smallsetminus a)$.
>
> $N$ is *$n$-sound* iff $R^{n}=P^{n}$.
> $N$ is *sound* iff $N$ is $n$ sound forall $n<\omega$.
**Remark.** $N$ is 1-sound iff whenever a parameter $p$ can be used to define a new $\Sigma_1$ subset of $N$, then every element if $N$ is definable from $\{p\} \cup \rho_M$.
## $\Sigma^{*}$-theory
### Formulas
>[!info] Definition - Syntax
> The $\Sigma^*$ $M$-language $\mathbb{L}^*=\mathbb{L}_M^*$ has
> - a binary predicate $\dot{\in}$
> - unary predicates $\dot{A}_1, \ldots, \dot{A}_n, \dot{B}_1, \ldots, \dot{B}_m$
> - variables $v_i^j(i, j<\omega)$ where $v^{j}$ is a variable of *type $j$*
>
> By induction on $n<\omega$ we define sets $\Sigma_h^{(n)}(h=0,1)$ of formulae:
> $\Sigma_0^{(n)}=$ the smallest set of formulae $\Sigma$ such that
> - all primitive formulae are in $\Sigma$.
> - $\Sigma_0^{(m)} \cup \Sigma_1^{(m)} \subset \Sigma$ for $m<n$.
> - $\Sigma$ is closed under sentential operations $\wedge, \vee, \rightarrow, \leftrightarrow, \neg$.
> - If $\varphi$ is in $\Sigma, j \leq n$, and $v^j \neq u^n$, then $\bigwedge v^j \in u^n \varphi, \bigvee v^j \in u^n \varphi$ are in $\Sigma$.
>
> We then set:
> $\Sigma_1^{(n)}=$ : The set of formulae $\bigvee v^n \varphi$, where $\varphi \in \Sigma_0^{(n)}$.
> Let $n<\omega, 1 \leq h<\omega .
> \Sigma_h^{(n)}$ is the set of formulae
> $
> \bigvee v_1^n \bigwedge v_2^n \ldots Q v_h^n \varphi
> $
> where $\varphi$ is $\Sigma_0^{(n)}$ (and $Q$ is $\bigvee$ if $h$ is odd and $\bigwedge$ if $h$ is even).
> $\mathrm{Fml}^{n}$ is the set of formulae in which only variables of type $\leq n$ occur.
>
>$\Sigma^{*}=\bigcup_{n<\omega}\Sigma_{0}^{(n)}=\bigcup_{n<\omega}\Sigma_{1}^{(n)}$.
>$\Sigma_{\omega}^{(n)}=\bigcup_{h<\omega}\Sigma_{h}^{(n)}$.
>[!info] Definition - Semantics
>Let $M=\left\langle J_\alpha^{\vec{A}}, \vec{B}\right\rangle$ acceptable. We define by induction:
> - The *$n$-th projectum* $\rho^n=\rho_M^n$.
> - The *$n$-th variable domain* $H^n=H_M^n$.
> - The *satisfaction relation* $\models^n$ for formulae in $\mathrm{Fml}^n$.
>
> As follows:
> - $\models^n$ is defined by interpreting variables of type $i$ as ranging over $H^i$ for $i \leq n$.
> - $\rho^0=\alpha, H^0=|M|=\left|J_\alpha^{\vec{A}}\right|$
> Now let $\rho^n, H^n$ be given (hence $\models^n$ is given).
> - Call a set $D \in H^n$ a $\underline{\Sigma}_1^{(n)}$ set if it is definable from parameters by a $\Sigma_1^{(n)}$ formula $\varphi$ :
> $D x \leftrightarrow M \models^n \varphi\left[x, a_1, \ldots, a_p\right],$
> where $\varphi=\varphi\left(v^n, u^{i_1}, \ldots, u^{i_m}\right)$ is $\Sigma_1^{(n)}$ .
> - $\rho^{n+1}$ is the least $\rho$ such that there is a $\Sigma_1^{(n)}$ set $D \subset \rho$ with $D \notin M$.
> - $H^{n+1}=\left|J_\rho^{\vec{A}}\right|$.
> - This then defines $\models^{n+1}$.
>
> $\models^i$ is contained in $\models^j$ for $i \leq j$, so we can define the full $\Sigma^*$ satisfaction relation for $M$ by:
> $
> \models\, :=\, \bigcup_n \models^n \text {. }
> $
>[!note] Remark
>The above definition, from [[Jensen - Manuscript on fine structure, inner model theory, and the core model below one Woodin cardinal]], gives an alternative definition for the iterated projecta.
### Relations and functions
The notions of *$\Sigma_{l}^{(n)}$ relations* and *good $\Sigma_{l}^{(n)}$ functions* are defined and explored
## 1.3 $\Sigma^{*}$ ultrapowers
Let $\bar{N}$ acceptable.
>[!note] Notation
>Let $\kappa\in \bar{N}$.
>$\Gamma=\Gamma(\kappa,\bar{N})$ is the set of $f:[\kappa]^{i}\to \bar{N}$ for some $i<\omega$ such that either $f\in \bar{N}$, or $f$ is a good $\underline{\Sigma}_{1}^{(n)}(\bar{N})$ function, where $n$ is such that $\rho_{\bar{N}}^{n+1}>\kappa$.
>[!info] Definition
>Let $\kappa\in \bar{N}$, and $E$ a $\kappa, \nu$ [[Extenders|extender]] over $\bar{N}$.
>The *$\Sigma^{\ast}$ ultrapower* of $\bar{N}$ using $E$, $\mathrm{Ult}(\bar{N},E;\Gamma)$ is as the usual ultrapower, when only using functions from $\Gamma$.
>If $\mathrm{Ult}(\bar{N},E ; \Gamma)$ is well founded we let $N$ be its transitive collapse, and the usual embedding is denoted $\pi:\bar{N}\to_{E}^{*}N$.
%%**Lemma.** The $\Sigma^{\ast}$ ultrapower satisfies Łoś's theorem for $\Sigma_{0}$ formulas.
(this is needed to define the ultrapower%%
**Lemma.** $\pi:\bar{N}\to_{E}^{*}N$ has the following properties:
1. $\pi:\bar{N}\to_{\Sigma^{*}}N$
2. $\mathcal{P}(\kappa)\cap \bar{N}=\mathcal{P}(\kappa)\cap N$
3. $\pi''P_{\bar{N}}^{*}\subseteq P_{N}^{*}$
4. The projecta of $\bar{N},N$ stabilise at the same point
5. $\mathcal{P}(\kappa)\cap \underline{\Sigma}^{*}(\bar{N})=\mathcal{P}(\kappa)\cap \underline{\Sigma}^{*}(N)$
## 1.4 Extendability
>[!info] Definition
>$N$ is *$\ast$-extendable* by $E$ if there exists $\pi:N \to_{E}^{\ast} N'$ (i.e. the ultrapower is well-founded).
>[!note] Notation
>Denote $\sigma:\left< N,E \right>\to^{^{*}}\left< N',E' \right>$ (or $\to^{(n)}$) iff:
>1. $\sigma:N\to_{\Sigma^{*}}N^{'}$ (or $\to_{\Sigma^{(n)}}$)
>2. $E$ is a [[Extenders#^defsteel|weak extender]] on $N$ s.t. $\tilde{E}=\{ \left< a,x \right> \mid x\in E_{a}\}$ is rudimentary over $N$ in parameter $p$.
>3. $E'$ is a weak extender on $N'$ s.t. $\tilde{E'}$ is rudimentary over $N'$ in parameter $\sigma(p)$ with the same definition.
**Lemma 1.** Let $\sigma: \langle \bar{N},\bar{E} \rangle \to^{*} \langle N,E \rangle$ and $\pi:N \to_{E}^{*} N'$. Then there are:
1. $\bar{\pi}:\bar{N}\to_{\bar{E}}^{*} \bar{N}'$
2. $\sigma':\bar{N} \to_{\Sigma^{*}} N$ unique s.t. $\sigma'\bar{\pi}=\pi\sigma$ and $\sigma'{\restriction}\bar{\nu}=\sigma{\restriction}\bar{\nu}$ (where $\bar{E}$ is a $\bar{\kappa}$ , $\bar{\nu}$ extender).
**Lemma 1'.** The same when replacing $\to^{*}$ with $\to^{(n)}$, assuming $\bar{\kappa}>\rho^{n}_{\bar{N}}$.
**Lemma 2.1.** Let $\sigma: \langle \bar{N},\bar{E} \rangle \to^{*} \langle N,E \rangle$ where $\bar{N}$ is countable and $\bar{E}$ is $\sigma$-complete. Then there are:
1. $\bar{\pi}:\bar{N}\to_{\bar{E}}^{*} \bar{N}'$
2. $\sigma':\bar{N} \to_{\Sigma^{*}} N$ unique s.t. $\sigma'\bar{\pi}=\pi$
**Corollary 2.2.** Let $E$ be a weak extender on $N$ s.t. $\tilde{E}$ is rudimentary (in parameters) over $N$ if $E$ is $\sigma$-complete then $N$ is $*$-extendable by $E$.
# 2. Mice
## 2.1-2.3
>[!info] Definition
> $M=\left< J_{\alpha}^{E},E_{\alpha} \right>$ is a *pre-mouse* (pm) iff
> 1. $E=\{ \left< x,\nu \right> \mid \nu\leq\alpha \land x\in E_{\nu}\}$ s.t. $M|\nu:=\left< J_{\nu}^{E},E_{\nu} \right>$ is acceptable for $\nu\leq \alpha$ and sound for $\nu<\alpha$
> 2. If $E_{\nu}\ne \varnothing$, there is $\kappa<\nu$ s.t.
> 1) $\kappa$ is the largest cardinal in $M|\nu$
> 2) $E_{\nu}$ is a normal measure on $\kappa$ in $M|\nu$
> 3) If $\pi:M|\nu \to_{E_{\nu}}N$, then $E^{N}{\restriction}\nu = E^{M}{\restriction}\nu$ and $E_{\nu}^{N}=\varnothing$
> 3. If $\kappa,\nu$ are as in 2. $\kappa<\tau<\nu$ and $\left< J_{\tau}^{E},E_{\nu}\cap J_{\tau}^{E} \right>$ satisfies 1-2, then $E_{\tau}=E_{\nu}\cap J_{\tau}^{E}$.
>[!note] Remark
>At the end of section 3.1, it is shown that in fact condition 3. is not required, i.e. any structure satisfying 1. and 2. (*quasi pre-mouse*) which is iterable in the sense below is in fact a mouse, i.e satisfies 3 as well.
## Iterations
>[!info] Definition - iterations
> Let $M$ be a pre-mouse.
> An *iteration of $M$ with indices $\left< \left< \nu_{i},\alpha_{i}\right>\mid i+1<\theta \right>$* is a sequence $\left< M_{i},\pi_{ij}\mid i\leq j <\theta \right>$ satisfying
> 1. $M_{0}=M$ and every $M_{i}$ is transitive
> 2. The $\pi_{ij}:M_{i}\to M_{j}$ commute
> 3. $\nu_{i}\leq \alpha_{i}\leq \mathrm{On}\cap M_{i}$
> 4. If $E_{\nu_{i}}=\varnothing$ then $M_{i+1}=M_{i}|\alpha_{i}$ and $\pi_{i,i+1}=\mathrm{id}{\restriction}(M_{i}|\alpha_{i})$
> 5. If $E_{\nu_{i}}\ne \varnothing$, then $\pi_{i,i+1}: M_{i} \to_{E_{\nu_{i}}}^{*}M_{i+1}$
> 6. $\{ i \mid \alpha_{i}\in M_{i}\}$ is finite.
> 7. If $\lambda$ is a limit ordinal then $M_{\lambda},\left< \pi_{i,\lambda}\mid i<\lambda \right>$ are the direct limit of the system $\left< M_{i},\pi_{ij}\mid i\leq j <\lambda \right>$
>Denote the ordinal on which $E_{\nu_{i}}$ is normal by $\kappa_{i}$.
>
>A *degenerate iteration* is a sequence satisfying all conditions except 4, i.e $\{i\mid \alpha_{i}\in M_{i}\}$ is infinite
>
> An iteration is *standard* iff
> 1. If $E_{\nu_{i}}=\varnothing$ then $\alpha_{i}=\mathrm{On}\cap M_{i}$
> 2. If $E_{\nu_{i}}\ne \varnothing$ then $\alpha_{i}$ is the maximal $\alpha$ s.t. $E_{\nu_{i}}$ is a measure in $M_{i}|\alpha_{i}$.
>
> **Remark**. in a standard iteration the sequence of indices is simply $\left< \nu_{i}\mid i<\theta \right>$
>
> An iteration is *simple* iff for all $i$, $\alpha_{i}=\mathrm{On}\cap M_{i}$.
> An iteration is *normal* if whenever $j<i$, $\nu_{j}<\nu_{i}$ and if $E_{\nu_{i}}^{M_{i}}\ne \varnothing$ then also $\nu_{j}<\kappa_{i}$
>[!note] Remark
>By non-degeneracy, every iteration has some $\beta$ s.t. for every $i\leq j <\theta$, $\pi_{ij}:(M_{i}|\beta)\to_{\Sigma^{*}}M_{j}$.
>In standard iterations, we have that $\pi_{ij}:M_{i}\to_{\Sigma^{*}}M_{j}$.
>[!info] Definition
>A *mouse* is an iterable pre-mouse, i.e. a pre-mouse such that every iteration $\left< M_{i}\mid i<\theta \right>$ can be continued:
>1. If $\theta=\lambda+1$, $\nu\leq\alpha\leq \mathrm{On}\cap M_{\lambda}$ and $E_{\nu}$ is a measure in $M_{\lambda}$, then $\pi:(M_{\lambda}|\alpha)\to_{E_{\nu}}^{*}M'$ exists.
>2. If $\theta$ is limit the the iteration has a well-founded direct limit.
>
**Lemma 1.1.** If $M$ is a mouse and $\sigma:\bar{M}\to_{\Sigma^{*}}M$ then $\bar{M}$ is a mouse.
**Lemma 1.3** A pm is a mouse iff it is *countably iterable* (i.e. every countable iteration exists)
**Lemma 2** Mice have no degenerate iterations.
**Lemma 3** If $M$ is an iterate of a mouse $\bar{M}$ with iteration map $\pi$, and there is $\sigma:\bar{M}\to_{\Sigma^{*}}M$ then
1. $\forall \xi\in \bar{M} \ \sigma(\xi)\geq \pi(\xi)$
2. the iteration is simple
3. Every iteration of $\bar{M}$ to $M$ is simple, and in fact equals $\pi$. I.e. the iteration is unique.
Denote it $\pi_{\bar{M}M}$
**Corollary.** No $M$ can be both a simple and a non-simple iterate of a mouse $\bar{M}$.
>[!note] Remark
>By lemma 2, the relation
> $M\ \mathrm{R} \ N \iff$ $M$ is a non-simple iterate of $N$
> is well-founded.
>It will be used for induction on mice.
## Comparison
>[!info] Definition
>Mice $M,N$ are *comparable* if one is an initial segment of the other.
>[!info] Definition
>Let $N^{0},N^{1}$ be pms. The *coiteration* $\left< N_{i}^{k} \right>$ ($k=0,1$) with common indices $\left< \nu_{i} \right>$ is defined as the standard iteration such that $\nu_{i}$ is the least $\nu$ s.t. $E_{\nu}^{0} \ne E_{\nu}^{1}$, if there is one. Otherwise the coiteration *terminates*.
>[!note] Remark
>If a coiteration terminates at $i$ then $N_{i}^{k}$ are comparable
**Lemmata.**
1. Both iterations on a coiteration are normal.
2. If $\overline{\overline{N^{0}}},\overline{\overline{N^{1}}}<\theta$ where $\theta$ is a regular cardinal, then the coiteration terminates before $\theta$.
3. If $N^{k}$ are mice, the coiteration terminates at $i$ and the iteration of $N^{0}$ to $N_{i}^{0}$ is not simple, then $N_{i}^{1}$ is an initial segment of $N_{i}^{0}$.
(The proof essentially shows that if an iterations ends in a sound mouse then it was not truncated.)
4. If both sides of the coiteration are not simple then the final iterates are equal.
## Iterability above a point
>[!info] Definition
> An iteration with indices $\langle \nu_{i},\alpha_{i} \rangle$ is said to be an *iteration above $\tau$* if for all $i$, $\nu_{i}>\tau$ and whenever $\kappa_{i}$ is defined, $\kappa_{i}\geq \tau$.
> A pm $M$ is *iterable above $\tau$* if any of its iterations above $\tau$ can be continued.
>
> $M,N$ are *coiterable above $\tau$* if both are iterable above $\tau$ and their coiteration is above $\tau$ on both sides.
**Facts.**
1. If $M$ is a mouse and $\sigma:\bar{M}\to_{\Sigma_{1}^{n}}M$ then $\bar{M}$ is iterable above $\rho^{n+1}_{\bar{M}}$.
2. If $M$ is iterable above $\tau$ then it has no degenerate iterationi above $\tau$.
3. If $\bar{M}$ is iterable above $\tau$ and $M$ an iterate of $\bar{M}$ above $\tau$ with iteration map $\pi$, and there is $\sigma:\bar{M}\to_{\Sigma^{*}}M$ then
1. $\forall \xi\in \bar{M} \ \sigma(\xi)\geq \pi(\xi)$
2. the iteration is simple
3. Every iteration of $\bar{M}$ to $M$ is simple, and in fact equals $\pi$. I.e. the iteration is unique.
4. If $M,N$ are coiterable above $\tau$ then $
\mathcal{P}(\tau)\cap \underline{\Sigma}^{*}(N)=
\mathcal{P}(\tau)\cap \underline{\Sigma}^{*}(M) $
## 2.3 Core Mice
>[!info] Definition
>Let $N$ be a mouse. $N$ is *pure* iff there is a sound mouse $\bar{N}$ s.t.
> 1. $N$ is a simple iterate of $\bar{N}$ above $\rho_{\bar{N}}^{\omega}$
> 2. If $M,N$ have a common simple iterate above $\rho_{\bar{N}}^{\omega}$, then $M$ is a simple iterate of $\bar{N}$ above $\rho_{\bar{N}}^{\omega}$.
>
>Note that when such $\bar{N}$ exists, it is unique, hence we can define:
> If $N$ is a pure mouse, the *core* of $N$, $\mathrm{core}(N)$ is the unique sound mouse $\bar{N}$ s.t. $N$ is a simple iterate of $\bar{N}$ above $\rho_{\bar{N}}^{\omega}$.
**Theorem.**
1. Every mouse is pure.
2. In the coiteration of two mice, at least one side is simple.
3. The standard parameter of a mouse is preserved by simple iterations (i.e. if $\pi:N\to M$ is simple then $\pi(p_{N})=p_{M}$).
## 2.4 Some consequences
>[!info] Definition
>Let $M,N$ be mice.
>$M\sim_{*}N$ iff they have a common non-simple iterate.
>$M<_{*}N$ iff there is a common iterate which is a simple itearate of $M$ but not of $N$.
>
**Lemma.**
1. $\sim_{*}$ is an equivalence relation.
2.
lt;_{*}$ is a strict linear ordering of mice modulo $\sim_{*}$.
# 3. Weasels
## 3.1
>[!info] Definition
>$W=J_{\infty}^{E}$ is a *weasel* iff for all $\alpha\in \mathrm{Ord}$, $W|\alpha$ is a mouse.
>*Weasel iterations* of length $\leq \infty$ are defined as for mice.
### Weasel coiterations
**Lemmata 1.**
1. Let $M$ a mouse, $W$ a weasel, $\langle M_{i},W_{i}\mid i<\theta \rangle$ their coiteration ($\theta\leq \infty$).
1. If $\langle W_{i} \rangle$ is nonsimple, then $\theta=\delta+1<\infty$ and $M_{\delta}$ is an initial segment of $W_{\delta}$.
2. If $\langle M_{i} \rangle$ is nonsimple, then $\theta= \infty$.
3. Hence one side is simple.
2. Let $\langle \nu_{i} \rangle$ be the coiteration indices, $E_{\nu_{i}}^{M}$ or $E_{\nu_{i}}^{W}$ a measure on $\kappa_{i}$. Assume $\theta=\infty$.
1. $\forall \xi \exists i \ \pi_{W_{0}W_{i}}(\xi)<\kappa_{i}$
2. There is a club $C$ s.t. $\forall i,j\in C \ \pi_{M_{i}M_{j}}(\kappa_{i})=\kappa_{j}$.
3. For $C$ as in 2., $i\in C$. Then $E_{\nu_{i}}^{M_{i}}$ is a measure on $\kappa_{i}$ in $M_{i}$ and $\{\kappa_{h}\mid h\in C \cap i\}$ is almost contained in each $X\in E_{\nu_{i}}^{M_{i}}$. In particular for every $\lambda\in C$ of $\mathrm{cf(\lambda)}>\omega$, $E_{\nu_{\lambda}}^{M_{\lambda}}$ is $\omega$-complete.
4. Let $\left< W_{i}\mid i<\infty \right>$ be a simple normal weasel iteration with indices $\langle \nu_{i} \rangle$, $E_{\nu_{i}}^{W_{i}}$ a measure on $\kappa_{i}$ whenever it is $\ne \varnothing$.
Suppose $\forall \xi \exists i \ \pi_{W_{0}W_{i}}(\xi)<\kappa_{i}$.
Let $W_{\infty}=\bigcup_{i}W_{i}|\kappa_{i}$, $\pi_{i\infty}:W_{i}\to W_{\infty}$ defined by $\pi_{i\infty}(x)=\pi_{ij}$ where $j$ is large enough so that $\mathrm{rank}(\pi_{ij}(x))<\kappa_{j}$.
Then $W_{\infty},\langle \pi_{i\infty} \rangle = \mathrm{lim}_{i\leq j}(W_{i},\pi_{ij})$.
5. Let $\left< W_{i}^{h} \mid i<\theta \right>$ ($h=0,1$) be the coiteration of the weasels $W^{0},W^{1}$ with indices $\langle \nu_{i} \rangle$.
1. One side is simple.
2. If one side is not simple, then $\theta=\infty$.
3. If $\theta=\infty$ then there is one side with $(*)\ \forall \xi \exists i \ \pi_{W^{h}_{0}W^{h}_{i}}(\xi)<\kappa_{i}$.
4. If both sides satisfy $(*)$ then $W^{0}_{\infty}=W^{1}_{\infty}$.
5. If $\theta=\infty$ and the $W^{0}$ side does not satisfy $(*)$, then there is a club $C$ s.t. forall $i,j\in C$ $\pi_{W_{i}^{0},W_{j}^{0}}(\kappa_{i})=\kappa_{j}$.
>[!note] Remark
>If $M$ is a *pre-mouse* and $N$ is a mouse or a weasel, we say they are *coiterable* if the coiteration exists. In this case, all the above results still hold.
### Universal weasels
>[!info] Definition
>A weasel is *universal* if the coiteration with any coiterable premouse terminates.
>A weasel is *weakly universal* if the coiteration with any mouse terminates.
>[!info] Definition
>The *Canonical $\omega$-complete hierarchy* $W_{\xi}=\langle J_{\gamma_{\xi}}^{E^{W_{\xi}}}, E_{\gamma_{\xi}}^{W_{\xi}} \rangle$ ($\gamma_{\xi}\leq \xi \leq \infty$) is defined as follows:
> - $W_{0}= \langle \varnothing,\varnothing \rangle$.
> - Let $W_{\xi}$ be defined.
> - If it is not a mouse, then $W_{\xi+1}$ is undefined.
> - Otherwise, let $\langle J_{\gamma}^{\bar{E}},\bar{E}_{\gamma} \rangle = \mathrm{core(W_{\xi})}$ and set $W_{\xi+1}= \langle J_{\gamma+1}^{\bar{E}},\varnothing \rangle$.
> - Let $W_{\xi}$ be defined for all $\xi<\lambda$ , where $\lambda\leq \infty$ is limit.
> Set $\sigma_{\xi}=\sigma(\xi,\lambda)=$ the maximal $\sigma \leq \xi$ s.t. $J_{\sigma}^{E^{W_{\xi}}}=J_{\sigma}^{E^{W_{\eta}}}$ for $\xi \leq \eta < \lambda$. So $\xi\leq\eta\implies \sigma_{\xi}\leq \sigma_{\eta}$ and $J_{\sigma_{\xi}}^{E^{W_{\xi}}}=J_{\sigma_{\xi}}^{E^{W_{\eta}}}$ .
> - If $\forall \xi<\lambda \exists \eta<\lambda \ (\sigma_{\xi}<\sigma_{\eta})$, let $J_{\bar{\lambda}}^{E}=\bigcup_{\xi<\lambda}J_{\sigma_{\xi}}^{E^{W_{\xi}}}$
> - If $\lambda=\infty$, let $W_{\infty}=J_{\bar{\lambda}}^{E}$.
> - Otherwise, let $W_{\lambda}= \langle J_{\bar{\lambda}}^{E},F \rangle$ where
> - $F$ is an $\omega$-complete measure s.t. $\langle J_{\bar{\lambda}}^{E},F \rangle$ is a mouse, provided such $F$ exists.
> - $F=\varnothing$ otherwise.
> - Otherwise $W_{\lambda}$ is undefined.
**Lemma 2.1.** $W_{\xi}$ is defined for all $\xi\leq \infty$.
**Corollary 2.2.** If $E_{\nu}^{W_{\xi}}$ is a measure in $W_{\xi}$ then it is $\omega$-complete.
>[!info] Definition
>A *bicephalus* is a structure $\langle J_{\gamma}^{E},F,G \rangle$ s.t.
>1. $\langle J_{\gamma}^{E},F \rangle$ and $\langle J_{\gamma}^{E},G \rangle$ are mice.
>2. $F,G$ are $\omega$-complete.
**Theorem.** All bicephali are trivial, i.e. $F=G$.
**Corollary 2.3.1** If $\langle J_{\gamma}^{E},\varnothing \rangle$ is a mouse and $\langle J_{\gamma}^{E},F \rangle$ is a pm with $F$ $\omega$-complete then the latter is a mouse.
**Corollary 2.4.** $W_{\xi}$ is unique, and hence also $W_{\infty}$ is uniquely defined.
>[!info] Definition
>$W_{\infty}$ is called the *canonical $\omega$-complete weasel*.
**Theorem.** (2.6-2.8)
1. $W_{\infty}$ is universal
2. $W_{\infty}$ is the unique weasel $W$ satisfying:
1. If $E_{\nu}$ is a measure in $W$ then it is $\omega$-complete.
2. If $\nu={\kappa^{+}}^{W}$ and there is an $\omega$-complete $F$ s.t. $\langle J_{\nu}^{H},F \rangle$ is a mouse, then $F=E_{\nu}$.
## 3.2 Some Properties of Weasels
>[!info] Definition
>A *long iteration* of a mouse/weasel $Q$ is an iteration $\langle Q_{i}\mid i<\infty \rangle$ with indices $\langle \nu_{i},\alpha_{i} \rangle$ such that $E_{\nu_{i}}\ne \varnothing$ for arbitrarily large $i<\infty$.
>Any other iteration is called *short*.
**Lemma 1.1.** For any long iteration with critical points $\kappa_{i}$, $\forall \alpha \exists \beta \forall i\geq \beta (\kappa_{i}\geq \alpha)$ .
>[!info] Definition
>Let $\langle Q_{i}\mid i<\infty \rangle$ be a long iteration. For every $\alpha$ let $\beta_{\alpha}$ be the least $\beta$ such that $\kappa_{i}\geq\alpha$ for all $i\geq \beta$. We define the *limit weasel* by
> $
> Q_{\infty}=\bigcup_{\alpha}J_{\alpha}^{E^{Q_{\beta_{\alpha}}}}
> $
>with the limit embedding
> $
> \pi_{i\infty}(x)=\pi_{i\beta_{\alpha}}(x)\ \text{ for } \alpha \text{ s.t. } \pi_{i\beta_{\alpha}}(x)\in J_{\alpha}^{E^{Q_{\beta_{\alpha}}}}.
> $
**Lemma 1.2.** TFAE
1. $\forall \xi \exists i \forall j\geq i\ \ \pi_{0i}(\xi)<\kappa_{j}$
2. $Q_{\infty},\langle \pi_{i\infty} \rangle= \lim_{i\leq j}(Q_{i},\pi_{ij})$
3. $\mathrm{dom}(\pi_{0\infty})=Q$
4. $\infty \subseteq \mathrm{dom}(\pi_{0,\infty})$
>[!info] Definition
>If the above conditions hold then $Q_{\infty}$ is a *simple iterate* of $Q$ by the iteration $\langle Q_{i} \rangle$.
**Corollary 3.1.** If $W$ is a simple iterate of $\bar{W}$ then it cannot also be a non-simple iterate of $\bar{W}$.
**Corollary 3.2.** The simple iteration map from $\bar{W}$ to $W$ is unique.
>[!info] Definition
>If $W,W'$ are weasels, let $W\sim_{*}W'$ iff $W,W'$ coiterate to a common simple iterate.
>> Equivalently they have a common simple iterate.
>> (The latter is not a formal definition since we cannot quantify over weasels)
>
>For a weasel $W$ and a moues/weasel $Q$:
> - $W\sim_{*}Q$ is always false
> - $W<_{*}Q$ iff they coiterate to a $W'$ which is a simple iterate of $W$ but not of $Q$.
> - $Q<_{*}W$ iff there is a bouse which is a simple iterate of $Q$ and a nonsimple iterate of $W$.
>> i.e. $Q<_{*}W|\alpha$ for some $\alpha$.
**Lemma 4.3.** lt;_{*}$ is a linear ordering of mice and weasels modulo the equivalence relation $\sim_{*}$.
**Lemma 4.4.** The weakly universal weasels comprise the maximal elements in lt;_{*}$.
**Theorem (appendix).** Every weakly universal weasel is universal.
# 3.3 Mitchell's Covering Lemma
## 3.3.1 The theory of $0^{s}$ (0-sword)
>[!info] Definition
> An *s-premouse* (spm) is a $J$-model $M= \langle J_{\beta}^{E},E_{\beta}, E_{\beta+1} \rangle$ s.t.
> 1. $\langle J_{\beta}^{E},E_{\beta} \rangle$ is a pm with $E_{\beta}\ne \varnothing$.
> 2. $E_{\beta+1}$ is a normal measure in $M$ on $\kappa=\mathrm{crit}(E_{\beta})$.
> 3. If $\pi:M \to_{E_{\beta+1}} M'$ then $M'|\beta = \langle J_{\beta}^{E},E_{\beta} \rangle$.
>
> The notions of iteration, simple-, standard- and normal-iterations, coiteration etc. are defined as before
>
> An *s-mouse* is an iterable spm.
> A *generalized mouse* (gm) is either a mouse or an s-mouse.
Most lemmas go through for s-mice as for mice.
Note that an s-mouse cannot be a proper initial segment of any g-mouse.
As a consequence the coiteration of two s-mice must be a simple iteration to a common s-mouse. Hence all s-mice have a common core.
>[!info] Definition
>$0^{s}$ = the core of all s-mice = the transitive collapse of $h_{M}(\varnothing)$ for any s-mouse $M$.
>$\neg0^{s}$ is the statement that $0^{s}$ doesn't exist.
>[!note] Remark
>$\rho^{n}_{0^{s}}=\omega$ for every $n$
> $\varnothing\in R^{1}_{0^{s}}$, $P_{0^{s}}=\varnothing$
>[!info] Definition
>Let $\alpha>\omega$ be regular. A weasel $W$ is called *$\alpha$-full* iff whenever $\lambda$ is a cardinal in $W$ s.t. $\mathrm{cf}(\lambda)(\alpha)$ and $\nu=(\lambda^{+})^{W}$, for every $\omega$-complete $F$ s.t. $\langle J_{\nu}^{E^{W}},F \rangle$ is a premouse, $F=E_{\nu}^{W}$.
>[!note] Remark
>Every $\alpha$-full weasel is universal.
**Theorem (Mitchel covering lemma).** Assume $\neg 0^{s}$. Let $W$ be an $\alpha$-full weasel and $\beta>\alpha^{\omega}$ a singular cardinal. Then $\beta^{+}=(\beta^{+})^{W}$ .
[...]
# 3.4 The Core Model
## 3.4.1 Strong mice
>[!info] Definition
>A mouse $N=\langle J_{\alpha}^{E},E_{\alpha} \rangle$ is *strong* iff whenever $M$ is a premouse s.t. $M|\alpha=N$ and $M$ is iterable above $\alpha$, then $M$ is a mouse and $N=\mathrm{core}(M)|\alpha$.
**Lemma 1.** Let $N=\langle J_{\alpha}^{E},E_{\alpha} \rangle$ a mouse. TFAE
1. $N$ is strong
2. There is a universal weasel $W$ s.t. $N=W|\alpha$.
3. There is a *canonical $\omega$-complete universal weasel over $N$*, denoted $W_{\infty}[N]$.
>[!info] Definition - The Core Model
>Define a hierarchy $K_{\nu}= \langle J_{\nu}^{E},E_{\nu} \rangle$ of strong mice by:
> - $K_{0}= \langle \varnothing,\varnothing \rangle$
> - $K_{\nu+1}= \langle J_{\nu+1}^{E},\varnothing \rangle$ if $K_{\nu}= \langle J_{\nu}^{E},E_{\nu} \rangle$ is strong.
> - For limit $\lambda$ let $J_{\lambda}^{E}=\bigcup_{\nu<\lambda}J_{\nu}^{E}$.
> - If $\langle J_{\lambda}^{E},\varnothing \rangle$ is strong and there is no $F\ne \varnothing$ s.t. $\langle J_{\lambda}^{E},F \rangle$ is strong, let $K_{\lambda}= \langle J_{\lambda}^{E},\varnothing \rangle$.
> - If there is a *unique* $F\ne \varnothing$ s.t. $\langle J_{\lambda}^{E},F \rangle$ is strong, set $K_{\lambda}=\langle J_{\lambda}^{E},F \rangle$.
> - Otherwise $K_{\lambda}$ is undefined.
> If $K_{\nu}$ is defined for all $\nu<\infty$, we define the *core model* $K=J_{\infty}^{E}=\bigcup_{\nu}J_{\nu}^{E}$.
## 3.4.2 If $0^{s}$ exists
**Theorem.** Assume $0^{s}$ exists and let $\tilde{K}$ be the weasel obtained by iterating the top measure of $0^{s}$. Then $K=\tilde{K}$.