# Part A. Introduction, Basic Theory and Examples
## Chapter I. Model-Theoretic Logics: Background and Aims
J. Barwise
1. Logics Embodying Mathematical Concepts . . . . . . . . . . . 3
2. Abstract Model Theory . . . . . . . . . . . . . . . . . . . 13
3. Conclusion .........22
## Chapter II. Extended Logics: The General Framework
H.D. Ebbinghaus
1. General Logics . . . . . . . . . . . . . . . . . . . . . . . 26
2. Examples of Principal Logics . . . . . . . . . . . . . . . . . 33
3. Comparing Logics . . . . . . . . . . . . . . . . . . . . . . 41
4. Lindström Quantifiers . . . . . . . . . . . . . . . . . . . . 49
5. Compactness and Its Neighbourhood . . . . . . . . . . . . . 59
6. Löwenheim-Skolem Properties . . . . . . . . . . . . . . . . 64
7. Interpolation and Definability . . . . . . . . . . . . . . . . 68
## Chapter III. Characterizing Logics
J. Flum
1. Lindström's Characterizations of First-Order Logic . . . . . . . 78
2. Further Characterizations of $\mathscr{L}_{\omega \omega}$. . . . . . . . . . . . . . . 91
3. Characterizing $\mathscr{L}_{\infty \omega \omega}$. . . . . . . . . . . . . . . . . . . . . 104
4. Characterizing Cardinality Quantifiers . . . . . . . . . . . . . 110
5. A Lindström-Type Theorem for Invariant Sentences . . . . . . . 115
# Part B. Finitary Languages with Additional Quantifiers
## Chapter IV. The Quantifier "There Exist Uncountably Many" and Some of Its Relatives
M. Kaufmann
1. Introduction to $\mathscr{L}\left(Q_\alpha\right)$. . . . . . . . . . . . . . . . . . . . 124
2. A Framework for Reducing to First-Order Logic . . . . . . . . 127
3. $\mathscr{L}\left(Q_1\right)$ and $\mathscr{L}_{\omega_1 \omega}\left(Q_1\right)$ : Completeness and Omitting Types Theorems .
4. Filter Quantifiers Stronger Than $Q_1$ : Completeness, Compactness, and Omitting Types
5. Extensions of $\mathscr{L}\left(Q_1\right)$ by Quantifiers Asserting the Existence of Certain Uncountable Sets
6. Interpolation and Preservation Questions . . . . . . . . . . . . . 155
7. Appendix (An Elaboration of Section 2) . . . . . . . . . . . . 173
## Chapter V. Transfer Theorems and Their Applications to Logics
J. H. Schmerl
1. The Notions of Transfer and Reduction . . . . . . . . . . . . 177
2. The Classical Transfer Theorems . . . . . . . . . . . . . . . 182
3. Two-Cardinal Theorems and the Method of Identities . . . . . . 188
4. Singular Cardinal-like Structures . . . . . . . . . . . . . . . 196
5. Regular Cardinal-like Structures . . . . . . . . . . . . . . . 198
6. Self-extending Models . . . . . . . . . . . . . . . . . . . . 202
7. Final Remarks . . . . . . . . . . . . . . . . . . . . . . . 208
## Chapter VI. Other Quantifiers: An Overview
D. Mundici
1. Quantifiers from Partially Ordered Prefixes . . . . . . . . . . . 212
2. Quantifiers for Comparing Structures . . . . . . . . . . . . . 217
3. Cardinality, Equivalence, Order Quantifiers and All That . . . . . 225
4. Quantifiers from Robinson Equivalence Relations . . . . . . . . 232
## Chapter VII. Decidability and Quantifier-Elimination
A. Baudisch, D. Seese, P. Tuschik and M. Weese
1. Quantifier-Elimination . . . . . . . . . . . . . . . . . . . . 236
2. Interpretations . . . . . . . . . . . . . . . . . . . . . . . 252
3. Dense Systems . . . . . . . . . . . . . . . . . . . . . . . 259
# Part C. Infinitary Languages
## Chapter VIII. $\mathscr{L}_{\omega_1 \omega}$ and Admissible Fragments
M. Nadel
### Part I. Compactness Lost . . . . . . . . . . . . . . . . . . . 272
1. Introduction to Infinitary Logics . . . . . . . . . . . . . . . 272
2. Elementary Equivalence . . . . . . . . . . . . . . . . . . . 276
3. General Model-Theoretic Properties . . . . . . . . . . . . . . 278
4. "Harder" Model Theory . . . . . . . . . . . . . . . . . . . 284
### Part II. Compactness Regained . . . . . . . . . . . . . . . 288
5. Admissibility . . . . . . . . . . . . . . . . . . . . . . . . 288
6. General Model-Theoretic Properties with Admissibility . . . . . . 296
7. "Harder" Model Theory with Admissibility . . . . . . . . . . 304
8. Extensions of $\mathscr{L}_{\omega_1 \omega}$ by Propositional Connectives . . . . . . . . 310
9. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . 316
## Chapter IX. Larger Infinitary Languages
M. A. Dickmann
1. The Infinitary Languages $\mathscr{L}_{\kappa \lambda}$ and $\mathscr{L}_{\infty \lambda}$. . . . . . . . . . . . 317
2. Basic Model Theory: Counterexamples . . . . . . . . . . . . . 326
3. Basic Model Theory: The Löwenheim-Skolem Theorems . . . . . 338
4. The Back-and-Forth Method . . . . . . . . . . . . . . . . . 348
## Chapter X. Game Quantification
Ph. G. Kolaitis
1. Infinite Strings of Quantifiers . . . . . . . . . . . . . . . . . 365
2. Projective Classes and the Approximations of the Game Formulas . 378
3. Model Theory for Game Logics . . . . . . . . . . . . . . . . 395
4. Game Quantification and Local Definability Theory . . . . . . . 400
## Chapter XI. Applications to Algebra
P. C. Eкlof
1. Universal Locally Finite Groups . . . . . . . . . . . . . . . 424
2. Subdirectly Irreducible Algebras . . . . . . . . . . . . . . 426
3. Lefschetz's Principle . . . . . . . . . . . . . . . . . . . . 428
4. Abelian Groups . . . . . . . . . . . . . . . . . . . . . . 431
5. Almost-Free Algebras . . . . . . . . . . . . . . . . . . . . 434
6. Concrete Algebraic Constructions . . . . . . . . . . . . . . . 437
7. Miscellany . . . . . . . . . . . . . . . . . . . . . . . . . 441
# Part D. Second-Order Logic
## Chapter XII. Definable Second-Order Quantifiers
J. Baldwin
1. Definable Second-Order Quantifiers . . . . . . . . . . . . . . 446
2. Only Four Second-Order Quantifiers . . . . . . . . . . . . . 451
3. Infinitary Monadic Logic and Generalized Products . . . . . . . 465
4. The Comparison of Theories . . . . . . . . . . . . . . . . . 470
5. The Classification of Theories by Interpretation of Second-Order Quantifiers . . . . . . . . . . . . . . . . 472
6. Generalizations . . . . . . . . . . . . . . . . . . 476
## Chapter XIII. Monadic Second-Order Theories
1. Monadic Quantification . . . . . . . . . . . . . . . . . . . 479
2. The Automata and Games Decidability Technique . . . . . . . . 482
3. The Model-Theoretic Decidability Technique . . . . . . . . . . 490
4. The Undecidability Technique . . . . . . . . . . . . . . . . 496
5. Historical Remarks and Further Results . . . . . . . . . . . . 501
# Part E. Logics of Topology and Analysis
## Chapter XIV. Probability Quantifiers
H. J. Keisler
1. Logic with Probability Quantifiers . . . . . . . . . . . . . . . 509
2. Completeness Theorems . . . . . . . . . . . . . . . . . . . 520
3. Model Theory . . . . . . . . . . . . . . . . . . . . . . . 530
4. Logic with Conditional Expectation Operators . . . . . . . . . 544
5. Open Questions and Research Problems . . . . . . . . . . . . 555
## Chapter XV. Topological Model Theory
M. Ziegler
1. Topological Structures . . . . . . . . . . . . . . . . . . . . 557
2. The Interpolation Theorem . . . . . . . . . . . . . . . . . . 560
3. Preservation and Definability . . . . . . . . . . . . . . . . . 565
4. The Logic $\mathscr{L}_{\omega_1 \omega}^1$. . . . . . . . . . . . . . . . . . . . . . . 568
5. Some Applications . . . . . . . . . . . . . . . . . . . . . 570
6. Other Structures . . . . . . . . . . . . . . . . . . . . . . 575
## Chapter XVI. Borel Structures and Measure and Category Logics
C. I. Steinhorn
1. Borel Model Theory . . . . . . . . . . . . . . . . . .579
2. Axiomatizability and Consequences for Category and Measure Logics . . . . . . . . . . . . . . . . . . . . . . . 586
3. Completeness Theorems . . . . . . . . . . . . . . . . . . . 591
# Part F. Advanced Topics in Abstract Model Theory
## Chapter XVII. Set-Theoretic Definability of Logics
599
J. Väänänen
1. Model-Theoretic Definability Criteria . . . . . . . . . . . . . 600
2. Set-Theoretic Definability Criteria . . . . . . . . . . . . . . . 609
3. Characterizations of Abstract Logics . . . . . . . . . . . . . . 619
4. Other Topics . . . . . . . . . . . . . . . . . . . . . . . . 630
## Chapter XVIII. Compactness, Embeddings and Definability
J. A. Makowsky
1. Compact Logics . . . . . . . . . . . . . . . . . . . . . . 648
2. The Dependence Number . . . . . . . . . . . . . . . . . . 663
3. $\mathscr{L}$-Extensions and Amalgamation . . . . . . . . . . . . . . . 670
4. Definability . . . . . . . . . . . . . . . . . . . . . . . . 685
## Chapter XIX. Abstract Equivalence Relations
J. A. Makowsky and D. MundicI
1. Logics with the Robinson Property . . . . . . . . . . . . . . 719
2. Abstract Model Theory for Enriched Structures . . . . . . . . . 728
3. Duality Between Logics and Equivalence Relations . . . . . . . 730
4. Duality Between Embedding and Equivalence Relations . . . . . 736
5. Sequences of Finite Partitions, Global and Local Back-and-Forth Games . . . . . . . . . . . . . . . . . 740
## Chapter XX. Abstract Embedding Relations
J. A. Makowsky
1. The Axiomatic Framework . . . . . . . . . . . . . . . . . . 750
2. Amalgamation . . . . . . . . . . . . . . . . . . . . . . . 759
3. $\omega$-Presentable Classes . . . . . . . . . . . . . . . . . . . . 776
# Bibliography . . . . . . . . . . . . . . . . .793
D. S. Scott, D. C. McCarty, and J. F. Horty