Jensen's hierarchy, also known as the **J-hierarchy**, is a modification of Gödel's [[Constructible universe|constructible hierarchy]].
# Rudimentary functions
From [Wikipedia](https://en.wikipedia.org/wiki/Jensen_hierarchy) and [[Schindler - Set Theory_ Exploring Independence and Truth]]
A *rudimentary function* is a $V^{n}\to V$ function (i.e. a finitary function accepting sets as arguments) that can be obtained from the following operations:
- $F(x_1,\dots, x_n) = x_i$
- $F(x_1,\dots, x_n) = \{x_i,x_j\}$ is rudimentary
- $F(x_1,\dots, x_n) = x_i \setminus x_j$
- $F(x_1,\dots, x_n)=h(g_{1}(x^{1}_1,\dots, x^{1}_{n_{1}}),\dots,g_{k}(x^{k}_1,\dots, x^{k}_{n_{k}}))$ where $h,g_{1},\dots,g_{k}$ are rudimentary
- $F(x_1,\dots, x_n) =\bigcup_{z\in x_{1}}G(z, x_2,\dots, x_n)$ where $G$ is a rudimentary function.
If $A$ is any set or class, a function is *rudimentary in $A$* if it can be obtained from the above operations and
- $F(x)=x\cap A$.
## Rudimentary closure
>[!info] Definition
> For any set $M$ let $\mathrm{rud}(M)$ be the smallest set containing $M\cup\{M\}$ closed under the rudimentary functions.
> If $A$ is any set or class, for any set $M$ let $\mathrm{rud}^{A}(M)$ be the smallest set containing $M\cup\{M\}$ closed under the rudimentary in $A$ functions.
**Lemma.** If $U$ is a transitive set, $A \subseteq U$, then $\mathcal{P}(U)\cap \mathrm{rud}_{A}(U)$ is exactly all subsets of $U$ which are definable in the model $(U;\in,A)$ with parameters from $U$.
Important trick (the $\tilde{}$ means "with parameters"): $\mathcal{P}(U) \cap {\tilde \Sigma}_\omega^{(U ; \in, E)}=\mathcal{P}(U) \cap \tilde{\Sigma}_0^{(U \cup\{U\} ; \in, E)}$
>[!info] Definition
> A structure $\left(U ; \in, A_1, \ldots, A_m\right)$, where $U$ is transitive and $A_1, \ldots$, $A_m \subset U^{<\omega}$, is called *amenable* if and only if $A_i \cap x \in U$ whenever $0<i \leq m$ and $x \in U$.
# The J-hierarchy
>[!info] Definition
>If $A$ is any set or class,
>- $J^{A}_0=\emptyset$
>- $J^{A}_{\alpha+1}=\mathrm{rud}^{A}(J^{A}_\alpha)$
>- $J^{A}_\beta=\bigcup_{\alpha<\beta} J^{A}_\alpha$ if $\beta$ is a limit ordinal
>
>Then $L[A]=\bigcup_{\alpha\in \mathrm{Ord}}J^{A}_{\alpha}$
^264f5d
>[!note] Remark
>In some places e.g. [[Schindler - Set Theory_ Exploring Independence and Truth]], only limit ordinals are used for the indexing (in order to have room for the finer [[Jensen's hierarchy#The S-hierarchy|S-hierarchy]]) so the definition would be
>- $J^{A}_0=\emptyset$
>- $J^{A}_{\alpha+\omega}=\mathrm{rud}^{A}(J^{A}_{\alpha})$
>- $J^{A}_{\omega\beta}=\bigcup_{\alpha<\beta} J^{A}_{\omega\alpha}$ if $\beta$ is a limit ordinal.
Assume from now on that $E \subseteq \mathrm{Lim}\times V$, denote $\begin{align}
E_\alpha=\{x:(\alpha, x) \in E\} \\
E\restriction\alpha=E \cap(\alpha \times V)
\end{align}$for limit ordinals $\alpha$, and assume that $E_\alpha \subset J_\alpha[E]$ and that $\left(J_\alpha[E] ; \in, E_\alpha\right)$ is amenable for every limit ordinal $\alpha$.
**Lemma.** For every limit ordinal, $J_\alpha[E] \cap \mathrm{OR}=\alpha$, and $\operatorname{Card}\left(J_\alpha[E]\right)=$ $\operatorname{Card}(\alpha)$.
**Theorem.** $L[E]\vDash \mathrm{ZFC}$
# The S-hierarchy
The auxiliary "S-hierarchy" is defined so that at each step, we add the images of members of the previous step under a certain *finite* list of rudimentary functions.
This hierarchy is used in the proof of $L[E]\vDash \mathrm{AC}$.
>[!info] Definition
>$
> \begin{aligned}
> S_0[E] & =\emptyset \\
> S_{\alpha+1}[E] & =\mathbf{S}^E\left(S_\alpha[E]\right) \\
> S_\lambda[E] & =\bigcup_{\xi<\lambda} S_{\xi}[E] \quad \text { for limit } \lambda
> \end{aligned}
> $
> where $\mathbf{S}^E$ is defined by
> $
> \mathbf{S}^E(U)=\bigcup_{i \in\{3,4,5,16\}} F_i^{\prime \prime}(U \cup\{U\}) \cup \bigcup_{i=0, i \neq 3,4,5}^{15} F_i^{\prime \prime}(U \cup\{U\})^2
> $
> where
> $
> \begin{aligned}
> F_0(x, y) & =\{x, y\} \\
> F_1(x, y) & =x \backslash y \\
> F_2(x, y) & =x \times y \\
> F_3(x) & =\bigcup x \\
> F_4(x) & =\{a: \exists b(a, b) \in x\} \\
> F_5(x) & =\in \cap(x \times x)=\{(b, a): a, b \in x \wedge a \in b\} \\
> F_6(x, y) & =\{\{b:(a, b) \in x\}: a \in y\} \\
> F_7(x, y) & =\{(a, b, c): a \in x \wedge(b, c) \in y\} \\
> F_8(x, y) & =\{(a, c, b):(a, b) \in x \wedge c \in y\} \\
> F_9(x, y) & =(x, y) \\
> F_{10}(x, y) & =\{b:(y, b) \in x\} \\
> F_{11}(x, y) & =\left(x,(y)_0,(y)_1\right) \\
> F_{12}(x, y) & =\left((y)_0, x,(y)_1\right) \\
> F_{13}(x, y) & =\left\{\left((y)_0, x\right),(y)_1\right\} \\
> F_{14}(x, y) & =\left\{\left(x,(y)_0\right),(y)_0\right\} \\
> F_{15}(x, y) & =\{(x, y)\} \\
> F_{16}(x) & =E \cap x .
> \end{aligned}
> $
> (Here, $(y)_0=u$ and $(y)_1=v$ if $y=(u, v)$ and $(y)_0=0=(y)_1$ if $y$ is not an ordered pair.)
**Proposition.**
$
S_\beta[E] \in J_\alpha[E]=S_\alpha[E]
$
for all limit ordinals $\alpha$ and all $\beta<\alpha$.
There is only a finite jump in $\in$-rank from $S_\alpha[E]$ to $S_{\alpha+1}[E]$.