# Definition
A [[forcing#^e01f21|forcing notion]] $\mathbb{P}$ is *rigid* if it has no non-trivial automorphisms
Let $B^*$ denote these elements of a complete Boolean algebra $B$ that are left fixed by every automorphism of $B$. We call $B^*$ the *rigid part* of $B$. ^rigid-part
# Properties
- Vôpenka: If $G$ is $B$-generic over $\mathfrak{M}$, then $(\mathrm{HOD} \mathfrak{M})^{\mathfrak{M}[G]}=\mathfrak{M}\left[G \cap B^*\right]$.
- $\mathrm{HOD}\mathfrak{M}^{\mathfrak{M}[G]}=\mathfrak{M}[G]$ [[Jech - Forcing with trees and ordinal definability]]
# Relations
## Implied by
- [[]]
## Implies
- [[]]
## Contrasts
[[Homogeneity]]
# Preservation