# Definitions
## The full tower
The *(full) stationary tower* on an ordinal $\delta$, denoted $\mathbb{P}_{<\delta}$ is the [[forcing|poset]] with:
- Conditions: $a\in V_{\delta}$ which is a [[Club sets and stationary sets|stationary]] subset of $\mathcal{P}(\cup a)$
- Order: $a\geq b$ iff $\cup a \subseteq \cup b$ and $\forall Z\in b$ $Z\cap\left(\cup a\right)\in a$ (i.e. $b\downarrow\left(\cup a\right)\subseteq a$).
## The countable tower
The *countable stationary tower* on an ordinal $\delta$, denoted $\mathbb{Q}_{<\delta}$ is the [[forcing|poset]] with:
- Conditions: $a\in V_{\delta}$ which is a [[Club sets and stationary sets|stationary]] subset of $\mathcal{P}_{\omega_{1}}(\cup a)$
- Order: $a\geq b$ iff $\cup a \subseteq \cup b$ and $\forall Z\in b$ $Z\cap\left(\cup a\right)\in a$ (i.e. $b\downarrow\left(\cup a\right)\subseteq a$).
# Properties
## The full tower