#forcing #forcing_notion #tree #souslin #kurepa
# Forcing an $\omega_{1}$-Souslin tree
![[Trees#^souslin]]
$\mathbb{P}$:
**Conditions**: trees $T$ such that one of the following hold
1. $T=\varnothing$
2. There is $\gamma<\omega_{1}$ such that $T \subseteq 2^{\leq \gamma}$ and for every $\alpha<\gamma$ every $t\in T_{\alpha}$, has at least $2$ distinct extensions in $T_{\gamma}$.
**Relation**: end-extension.
**Lemma.** $\mathbb{P}$ is $\sigma$-[[Closed forcing|closed]].
**Lemma.** Hence we get an $\omega_{1}$-tree.
**Lemma.** The generic will be Souslin.
# Killing an $\omega_{1}$-Souslin tree
Let $(T,\leq)$ be a Souslin tree.
**Lemma.** The set $X=\{ x \in T \mid x^{\uparrow} \text{ is countable} \}$ is countable.
**Theorem.** $\mathbb{P}=(T \smallsetminus X,\geq)$ is [[Chain conditions#^ccc|c.c.c]] and forces a branch through $T$.
>[!note] Remark
> If $\mathbb{P}$ is a forcing notion such that $\mathbb{P}\times \mathbb{P}$ is c.c.c. then $\mathbb{P}$ cannot add an $\omega_{1}$ branch to an $\omega_{1}$ tree.
> Hence the square of a Souslin tree is not Souslin.
# Forcing an $\omega_{1}$-Kurepa tree
![[Trees#^kurepa]]
Let $\mathbb{P}$ be the forcing to add a Souslin tree. Define $\mathbb{Q}$ by using $\mathbb{P}$ as the working part.
**Conditions:** $(T,I,f)$ where
- $T\in \mathbb{P}$.
- $I \in [\omega_{2}]^{\aleph_{0}}$
- $f:I\to T_{\gamma}$ finite-to-1 where $\gamma+1=\mathrm{ht}(T)$
**Relation** $(T',I',f')\leq (T,I,f)$ iff
- $T'$ end-extends $T$
- $\forall i\in I$, $f(i) \subseteq f'(i)$
If $G$ is generic, $T^{*}$ the generic tree.
$\forall\tau<\omega_{2}$ let $B(\tau)=\{ f(\tau) \mid (T,I,f) \in G\}$. Then this is a branch in $T^{*}$, and for $\tau \ne \tau'$ , $B(\tau)\ne B(\tau')$ .
So $T^{*}$ is a Kurepa tree.
**Lemma.** The following sets are dense:
- $\forall\alpha <\omega_{1}$ $D_{\alpha}=\{ (T,I,f) \mid \mathrm{ht}(T)\geq \alpha \}$ (so we get an $\omega_{1}$ tree).
- $\forall \tau<\omega_{2}$ $E_{\tau}=\{ (T,I,f) \mid \tau\in I\}$ (so we get $\aleph_{2}$ branches).
**Lemma.** $\mathbb{Q}$ is $\sigma$-[[Closed forcing|closed]].
**Lemma.** CH implies $\mathbb{Q}$ is $\aleph_{2}$-c.c.
# Killing all $\omega_{1}$-Kurepa trees
**Lemma.** If $\mathbb{P}$ is $\aleph_{1}$-closed then it doesn't add new $\aleph_{1}$-branches to an $\aleph_{1}$-tree.
Strategy: devise $\mathbb{P}$ such that for every $\aleph_{1}$-tree $T$ in $V^{\mathbb{P}}$ we can write $\mathbb{P}=\mathbb{P}_{1}\times \mathbb{P}_{2}$ such that $T\in V^{\mathbb{P}_{1}}$ is not Kurepa and $\mathbb{P}_{1},\mathbb{P}_{2}$ are $\aleph_{1}$-closed.
Let $\theta$ strongly inaccessible, and use the [[Collapse forcing#Levy collapse|Levy collapse]] $\mathrm{Coll}(\omega_{1},<\theta)$.
For every $T\in V^{\mathbb{P}}$ there is $\mu<\theta$ such that the number of branches is forced to be less than $\mu$. Then we can write: $\mathrm{Coll}(\omega_{1},<\theta)\equiv \mathrm{Coll}(\omega_{1},<\mu)\times\mathrm{Coll}(\omega_{1},[\mu,\theta))$ with the desired properties.