## Exponentiation
If $κ$ is a limit cardinal, and $λ ≥ \mathrm{cf} (κ)$, then $κ^λ = (lim_{α→κ} α^λ )^{\mathrm{cf} (κ)}$.
**Theorem** Jech 5.15. If GCH holds and $κ$ and $λ$ are infinite cardinals then:
1. If $κ ≤ λ$, then $κ^λ = λ^+$ .
2. If $\mathrm{cf} κ ≤ λ < κ$, then $κ^λ = κ^+$ .
3. If $λ < \mathrm{cf} κ$, then $κ^λ = κ$.
4. In particular
- for regular $\kappa$, $\kappa^{<\kappa}=\kappa$.
- For singular $\kappa$, $\kappa^{<\kappa}=\kappa ^{+}$. ^8702eb
### Hausdorff formula
For $\theta \leq \lambda$ $(\lambda ^{+})^{\theta}=\max \{\lambda ^{+},\lambda^{\theta}\}$