From [[Barwise, Feferman (eds.) - Model-theoretic logics]] chapter II section 3
>[!info] Definition
> Let $\mathcal{L}$ be a logic and $\mathfrak{R}$ a class of $τ$-structures.
>- We say that $\mathfrak{R}$ is an *elementary class* in $\mathcal{L}$ (or that $\mathfrak{R}$ is EC in $\mathcal{L}$, or that $\mathfrak{R}\in \mathrm{EC}_{\mathcal{L}}$ ) iff there is $φ\in \mathcal{L}[\tau]$ such that $\mathfrak{R}=\mathrm{Mod}^{\tau}_{\mathcal{L}}(\varphi)$.
>- We say that $\mathfrak{R}$ is a *projective class* in $\mathcal{L}$ (or that $\mathfrak{R}$ is PC in $\mathcal{L}$ or that $\mathfrak{R}\in \mathrm{PC}_{\mathcal{L}}$ iff
> - *One sorted:* there is $τ' \supseteq τ$, and a class $\mathfrak{R}