# $\omega_{1}$-like dense linear ordering
**Theorem ([[Hutchinson - Model theory via set theory|Hutchinson]]/Silver).** Every two $\omega_{1}$-like dense linear orderings with first element are $L_{\infty\omega_{1}}$-equivalent.
In particular: Let $\eta$ be the order type of the rational numbers. Then $1+\eta\cdot\omega_{1} \equiv_{\infty\omega_{1}}(1+\eta)\cdot\omega_{1}$
## The orders $\Phi(A)$
>[!info] Definition
>With each set $A \subseteq \omega_1$ associate an ordered set $\Phi(A)$ whose order type is $\Sigma_{\alpha<\omega_1}\tau_\alpha$ where
> $
> \tau_\alpha=\begin{cases}
> 1+\eta & \alpha \in A \\
> \eta & \alpha \notin A
> \end{cases}
> $
>>[!note] Remark
>>$\Phi(A)$ is always an $\omega_1$-like d.l.o., which has a first element iff $0 \in A$.
**Theorem ([[Conway - Homogeneous ordered sets|Conway]]).**
1. Every $\omega_1$-like d.l.o. is isomorphic to $\Phi(A)$ for some $A \subseteq \omega_1$.
2. If $A, B \subseteq \omega_1, 0 \in A \cap B$ then $\Phi(A) \cong \Phi(B)$ iff $A \cap C=B \cap C$ for some closed unbounded $C \subseteq \omega_1$.