This page will contain links to summary accounts of supporting foundational or background material used on the rest of the site. You may like to begin in the [playroom](Playroom.md "Playroom") for an entertaining introduction to infinity. Meanwhile, we expect that this page and these resources will be expanded as Cantor's attic develops. ## Definition of infinity - Short informal presentation of the concept of [infinity](Infinity.md "Infinity"). - The [](First_steps.md) towards infinity. ## Elementary set-theoretic topics - [transitive](Transitive.md "Transitive") - [](Ordering_Relations.md) - [ordinal](Ordinal.md "Ordinal") - [](Successor%20ordinal.md) - [](Limit%20ordinal.md) - [cardinality](Cardinality.md "Cardinality") - <a href="Axiom_of_choice" class="mw-redirect" title="Axiom of choice">axiom of choice</a> - [[Club sets and stationary sets|stationary]], [club](Club%20sets%20and%20stationary%20sets.md "Club") - <a href="index.php?title=Hereditary_cardinality&amp;action=edit&amp;redlink=1" class="new" title="Hereditary cardinality (page does not exist)">Hereditary cardinality</a> - <a href="Ultrafilter" class="mw-redirect" title="Ultrafilter">ultrafilter</a>, <a href="Measure" class="mw-redirect" title="Measure">measure</a> - [ultrapower](Ultrapower.md "Ultrapower") - [](Partition%20property.md) - [model](Model.md "Model") ## Axiomatic set theories - <a href="Morse-Kelley_set_theory" class="mw-redirect" title="Morse-Kelley set theory">Morse-Kelley set theory</a> - [](ZFC.md) - [](Positive_set_theory.md) - [](Kripke-Platek.md) - <a href="index.php?title=New_Foundations&amp;action=edit&amp;redlink=1" class="new" title="New Foundations (page does not exist)">New Foundations</a> ## Forcing - [forcing](Forcing.md "Forcing") - <a href="index.php?title=Boolean-valued_models&amp;action=edit&amp;redlink=1" class="new" title="Boolean-valued models (page does not exist)">Boolean-valued models</a> - <a href="index.php?title=Boolean_ultrapowers&amp;action=edit&amp;redlink=1" class="new" title="Boolean ultrapowers (page does not exist)">Boolean ultrapowers</a>