BEAF, or Bowers Exploding Array function, is an extremely fast-growing function. ## Definitions - The "base" (*b*) is the first entry in the array. - The "prime" (*p*) is the second entry in the array. - The "pilot" is the first non-1 entry after the prime. It can be as early as the third entry. - The "copilot" is the entry immediately before the pilot. The copilot does not exist if the pilot is the first entry in its row. - A "structure" is a part of the array that consists of a lower-dimensional group. This could be an entry (written \(X^0\)), a row (written \(X^1\)), a plane (\(X^2\)), a realm (\(X^3\)), or a flune (\(X^4\)), not to mention higher-dimensional structures (\(X^5\), \(X^6\), etc.) and <a href="index.php?title=Tetration&amp;action=edit&amp;redlink=1" class="new" title="Tetration (page does not exist)">tetrational</a> structures, e.g. \(X\uparrow\uparrow 3\). We can also continue with <a href="index.php?title=Pentation&amp;action=edit&amp;redlink=1" class="new" title="Pentation (page does not exist)">pentational</a>, <a href="index.php?title=Hexation&amp;action=edit&amp;redlink=1" class="new" title="Hexation (page does not exist)">hexational</a>, ..., <a href="index.php?title=Expansion&amp;action=edit&amp;redlink=1" class="new" title="Expansion (page does not exist)">expandal</a>, ... structures. - A "previous entry" is an entry that occurs before the pilot, but is on the same row as all other previous entries. A "previous row" is a row that occurs before the pilot's row, but is on the same plane as all other previous rows. A "previous plane" is a plane that occurs before the pilot's plane, but is on the same realm as all other previous planes, etc. These are called "previous structures." - A "prime block" of a structure \(S\) is computed by replacing all instances of \(X\) with \(p\). For example, if \(S = X^3\), the prime block is \(p^3\), or a cube of side length \(p\). The prime block of an \(X^X\) structure is \(p^p\), a \(p\)-hypercube with sidelength \(p\). - The "airplane" includes the pilot, all previous entries, and the prime block of all previous structures. - The "passengers" are the entries in the airplane that are not the pilot or copilot. - The value of the array is notated \(v(A)\), where *A* is the array. ## Rules 1. *Prime rule*: If \(p = 1\), \(v(A) = b\). 2. *Initial rule*: If there is no pilot, \(v(A) = b^p\). 3. *Catastrophic rule*: If neither 1 nor 2 apply, then: 1. pilot decreases by 1, 2. copilot takes on the value of the original array with the prime decreased by 1, 3. each passenger becomes *b*, 4. and the rest of the array remains unchanged. ## Examples \begin{eqnarray*} \{3,3,3,3\} &=& \{3,\{3,2,3,3\},2,3\} \\ &=& \{3,\{3,\{3,1,3,3\},2,3\},2,3\} \\ &=& \{3,\{3,3,2,3\},2,3\} \\ &=& \{3,\{3,\{3,2,2,3\},1,3\},2,3\} \\ &=& \{3,\{3,\{3,\{3,1,2,3\},1,3\},1,3\},2,3\} \\ &=& \{3,\{3,\{3,3,1,3\},1,3\},2,3\} \\ &=& \{3,\{3,\{3,3,\{3,2,1,3\},2\},1,3\},2,3\} \\ &=& \{3,\{3,\{3,3,\{3,3,\{3,1,1,3\},2\},2\},1,3\},2,3\} \\ &=& \{3,\{3,\{3,3,\{3,3,3,2\},2\},1,3\},2,3\} \\ &=& \{3,\{3,\{3,3,\{3,\{3,\{3,3,1,2\},1,2\},2,2\},2\},1,3\},2,3\} \\ &=& \{3,\{3,\{3,3,\{3,\{3,\{3,3,\{3,2,1,2\}\},1,2\},2,2\},2\},1,3\},2,3\} \\ &=& \{3,\{3,\{3,3,\{3,\{3,\{3,3,\{3,3,\{3,1,1,2\}\}\},1,2\},2,2\},2\},1,3\},2,3\} \\ &=& \{3,\{3,\{3,3,\{3,\{3,\{3,3,\{3,3,3\}\},1,2\},2,2\},2\},1,3\},2,3\} \\ &=& \{3,\{3,\{3,3,\{3,\{3,3\uparrow^{3\uparrow\uparrow\uparrow3}3,1,2\},2,2\},2\},1,3\},2,3\} \end{eqnarray*} ------------------------------------------------------------------------ Using {a, b, ... (1) c, d, ...} to denote {a, b, ...} {c, d, ...} a 2-dimensional array (For example, $\{3,3,3 (1) 3,3,3 (1) 3,3,3\}$ means a 3-by-3 square of threes): \begin{eqnarray*} \{3,3(1)3,3\} &=& \{3,3,3(1)2,3\} \\ &=& \{3,\{3,2,3(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,3,2(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,2,2(1)2,3\}(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,3(1)2,3\}(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,3,3(1)1,3\}(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,\{3,2,3(1)1,3\},2(1)1,3\}(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,\{3,3,2(1)1,3\},2(1)1,3\}(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,2,2(1)1,3\}(1)1,3\},2(1)1,3\}(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3(1)1,3\}(1)1,3\},2(1)1,3\}(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3(1)\{3,2(1)1,3\},2\}(1)1,3\},2(1)1,3\}(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3(1)\{3,3(1)3,2\},2\}(1)1,3\},2(1)1,3\}(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,\{3,\{3,3,3(1)\{3,3,3(1)2\}\}(1)1,2\},2(1)1,2\}(1)2,3\}(1)2,2\},2\}(1)1,3\},2(1)1,3\}(1)2,3\},2(1)2,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,2,3(1)2\},2(1)2\}\}(1)1,2\},2(1)1,2\}(1)2,3\}(1)2,2\},2\}(1)1,3\},2(1)1,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,3,2(1)2\},2(1)2\}\}(1)1,2\},2(1)1,2\}(1)2,3\}(1)2,2\},2\}(1)1,3\},2(1)1,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,2,2(1)2\}(1)2\},2(1)2\}\}(1)1,2\},2(1)1,2\}(1)2,3\}(1)2,2\},2\}(1)1,3\},2(1)1,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,3(1)2\}(1)2\},2(1)2\}\}(1)1,2\},2(1)1,2\}(1)2,3\}(1)2,2\},2\}(1)1,3\},2(1)1,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,3,3\}(1)2\},2(1)2\}\}(1)1,2\},2(1)1,2\}(1)2,3\}(1)2,2\},2\}(1)1,3\},2(1)1,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,3\uparrow\uparrow\uparrow3(1)2\},2(1)2\}\}(1)1,2\},2(1)1,2\}(1)2,3\}(1)2,2\},2\}(1)1,3\},2(1)1,3\} \\ &=& \{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{3,\{3,\{3,\{3,3,3(1)\{3,\{\underbrace{3,\cdots,3}_{3\uparrow\uparrow\uparrow3}\},2(1)2\}\}(1)1,2\},2(1)1,2\}(1)2,3\}(1)2,2\},2\}(1)1,3\},2(1)1,3\} \end{eqnarray*} More generally, (n) is typically used as a separator representing a line/plane/... shift in a n-dimensional array. BEAF is however formally undefined past (n)-separators. In particular, the so-called "tetrational" arrays are not defined, contrary to popular belief.