The Ackermann function, expressed as \\(A(a,b)\\), is a function for
expressing extremely large numbers.
## Defination
The Ackermann function is defined as follows:
\\begin{array}{l}
A(0,b)=b+1 \\\\
A(a,0)=A(a-1,1) \\\\
A(a,b)=A(a-1,A(a,b-1))
\\end{array}
## Example
\\begin{eqnarray*}
A(4,3) &=& A(3, A(4, 2)) \\\\
&=& A(3, A(3, A(4, 1))) \\\\
&=& A(3, A(3, A(3, A(4, 0)))) \\\\
&=& A(3, A(3, A(3, A(3, 1)))) \\\\
&=& A(3, A(3, A(3, A(2, A(3, 0))))) \\\\
&=& A(3, A(3, A(3, A(2, A(2, 1))))) \\\\
&=& A(3, A(3, A(3, A(2, A(1, A(2, 0)))))) \\\\
&=& A(3, A(3, A(3, A(2, A(1, A(1, 1)))))) \\\\
&=& A(3, A(3, A(3, A(2, A(1, A(0, A(1, 0))))))) \\\\
&=& A(3, A(3, A(3, A(2, A(1, A(0, A(0, 1))))))) \\\\
&=& A(3, A(3, A(3, A(2, A(1, A(0, 2)))))) \\\\
&=& A(3, A(3, A(3, A(2, A(1, 3))))) \\\\
&=& A(3, A(3, A(3, A(2, A(0, A(1, 2)))))) \\\\
&=& A(3, A(3, A(3, A(2, A(0, A(0, A(1, 1))))))) \\\\
&=& A(3, A(3, A(3, A(2, A(0, A(0, A(0, A(1, 0)))))))) \\\\
&=& A(3, A(3, A(3, A(2, A(0, A(0, A(0, A(0, 1)))))))) \\\\
&=& A(3, A(3, A(3, A(2, A(0, A(0, A(0, 2))))))) \\\\
&=& A(3, A(3, A(3, A(2, A(0, A(0, 3)))))) \\\\
&=& A(3, A(3, A(3, A(2, A(0, 4))))) \\\\
&=& A(3, A(3, A(3, A(2, 5))))
\\end{eqnarray*}
## Explicit formula
We now prove that \\(A(a, b) = 2 \uparrow^{a - 2} (b + 3) - 3\\) for \\(a>2\\).
\\begin{eqnarray*}
A(0, b) &=& b + 1 \\\\
A(1, b) &=& A(0, A(1, b - 1)) \\\\
&=& A(1, b - 1) + 1 \\\\
&=& A(1, b - 2) + 2 \\\\
&=& \cdots \\\\
&=& A(1, b - b) + b \\\\
&=& b + 2 \\\\
A(2, b) &=& A(1, A(2, b - 1)) \\\\
&=& A(2, b - 1) + 2\\times 1 \\\\
&=& A(2, b - 2) + 2\\times 2 \\\\
&=& \cdots \\\\
&=& A(2, b - b) + 2b \\\\
&=& 2b + 3 \\\\
&=& 2(b + 3) - 3 \\\\
A(3, b) &=& A(2, A(3, b - 1)) \\\\
&=& 2(A(3, b - 1) + 3) - 3 \\\\
&=& 2^2(A(3, b - 2) + 3) - 3 \\\\
&=& \cdots \\\\
&=& 2^b(A(3, 0) + 3) - 3 \\\\
&=& 2^{b + 3} - 3
\\end{eqnarray*}
Assuming that this holds true for \\(a=k\\), for \\(a=k+1\\):
\\begin{eqnarray*}
A(k + 1, b) &=& A(k, A(k + 1, b - 1)) \\\\
&=& 2 \uparrow^{k - 2} (A(k, A(k + 1, b - 2) + 3) - 3 \\\\
&=& \cdots \\\\
&=& \underbrace{2 \uparrow^{k - 2} 2 \uparrow^{k - 2} \cdots}_\text{b 2's} \uparrow^{k - 2} (A(k + 1, 0) + 3) - 3 \\\\
&=& \underbrace{2 \uparrow^{k - 2} 2 \uparrow^{k - 2} \cdots \uparrow^{k - 2} 2 \uparrow^{k - 2} 2}_\text{b+3 2's} - 3 \\\\
&=& 2 \uparrow^{k - 1} (b + 3) - 3
\\end{eqnarray*}
QED.